This website will offer limited functionality in this browser. We only support the recent versions of major browsers like Chrome, Firefox, Safari, and Edge.

Technology Collaboration Programme by IEA

Techno – Economic Evaluation of SMR Based Standalone (Merchant) Hydrogen Plant with CCS

Guido Collodi, Giuliana Azzaro, Noemi Ferrari

Citation: IEAGHG, "Techno - Economic Evaluation of SMR Based Standalone (Merchant) Hydrogen Plant with CCS", 2017-02, February 2017.

Download The Full Publication Now

Publication Overview

This study aimed to provide baseline information presenting the performance and costs of incorporating the CO2 capture technologies to a SMR based hydrogen plant operating as merchant plant (as a standalone plant). The basis of the design of the hydrogen production process are presented in the main report. These are briefly described in this overview. The selection of technology options for CO2 capture is based on the available information and performance data that could be provided by equipment manufacturers and suppliers.

Publication Summary

  • IEAGHG have systematically evaluated the performance and cost of integrating CCS in various energy intensive industries. To date, the programme looked at deploying CCS in the cement, iron and steel, pulp and paper industry, whilst studies in the oil refining, methanol and ammonia/urea production from NG underway.
  • Hydrogen is a key raw material to other energy intensive industries. Globally, nearly 90% of the hydrogen produced is consumed by the ammonia, methanol and oil refining industries. In the future, hydrogen could also play an important role in the decarbonisation of space heating (i.e. industrial, commercial, building and residential heating) and transport fuel (i.e. use of fuel cell vehicles).
  • Currently, the steam methane reformer (SMR) is the leading technology for H2 production from natural gas or light hydrocarbons. Modern SMR based hydrogen production facilities have achieved efficiencies that could reduce CO2 emissions down to nearly 10% above its theoretical minimum. Further reduction of CO2 emissions from hydrogen production would only be possible by the integration of CCS.
  • This study provides an up-to-date assessment of the performance and costs of a modern SMR based H2 plant without and with CCS producing 100,000 Nm3/h H2 and operating as a merchant plant (i.e. standalone plant – without any integration to an industrial complex).
  • Unlike other studies in the series, the capture of CO2 from an SMR plant is a commercial operation. This is one of the main sources of industrial and food grade CO2 in the market globally. However, only 3 sites around the world have demonstrated the integration of CO2 capture with CO2 transport and storage. These include (a.) Port Arthur Project in the USA, (b.) Quest Project in Canada, and (c.) Tomakomai Project in Japan.
  • This study presents the economics of deploying CCS in an SMR based hydrogen plant capturing CO2 from the (a.) shifted syngas, (b.) PSA’s tail gas or (c.) SMR’s flue gas. Each capture option was evaluated using IEAHG’s standard assessment criteria against a Base Case (i.e. H2 plant without CCS).
  • The Base Case consists of: (a.) feedstock pre-treatment, (b.) pre-reformer, (c.) primary reformer, (d.) high temperature shift reactor and (e.) pressure swing absorption or PSA in single train arrangement producing 100,000 Nm3/h of H2 (purity >99.9%). It consumes about 14.21 MJ of NG and emits about 0.81 kg of CO2 per Nm3 H2 It has a surplus of ~9.9MWe electricity which is exported to the grid.
  • The current industry standard for capturing CO2 from an SMR Based H2 plant is the capture of CO2 from the shifted syngas using MDEA solvent. Four other CO2 capture options were then evaluated as part of this study. These include: the use of H2 rich burner in conjunction with capture of CO2 from shifted syngas using MDEA; the capture of CO2 from PSA’s tail gas using MDEA, or the use of Cryogenic and Membrane Separation; and the capture of CO2 from flue gas using MEA. These options involve the CO2 capture rate in the range of 56% to 90%.
  • For all the CCS cases, the addition of the CO2 capture increases the total plant cost by 18% to 79% compared to the Base Case. This corresponds to an additional total capital requirement) of around €40 to €176 million (Q4 2014 estimates)
  • For all bar one of the capture options considered, the incorporation of CO2 capture increases the natural gas consumption by 0.46 to 1.41 MJ/Nm3 H2. Similarly, all options with CO2 capture resulted in a reduction of the surplus electricity that could be exported to the grid. These changes resulted to an increase in the operating cost of hydrogen production by 18% to 33% compared to the Base Case.
  • Adding CCS to an SMR based H2 plant results to an increase in the Levelised Cost of Hydrogen between € 0.021 and € 0.051 per Nm3 H2 (from € 0.114 per Nm3 for the Base Case). This corresponds to a CO2 avoidance cost (CAC) of between €47 and €70 per tonne of CO2.

Download Publication

Access the complete publication in PDF format.

Download Now

Related Publications

View similar publications.

View All Publications
Technical Report

Power CCS: Potential for cost reductions and improvements

  • 5 August 2024
  • Capture
  • Costs of CCUS

CCS, in the context of power CCS technologies, will be an essential component of the portfolio of technologies required to reach net-zero emissions in the power sector. This study explores the potential to reduce the cost and accelerate the uptake of power CCS technologies.

Technical Review

7th Post-Combustion Capture Conference Summary

  • 1 April 2024
  • Capture
  • Event Proceedings

The 7th edition of the Post Combustion Capture Conference (PCCC-7) was held on the 25?28 September 2023 and was jointly hosted by the IEAGHG, U.S. Department of Energy (DOE) and the National Energy Technology Laboratory (NETL) and sponsored by Worley, Shell, and Mitsubishi Heavy Industries. (MHI).

Technical Report

Techno-Economic Assessment of Small-Scale Carbon Capture for Industrial and Power Systems

  • 1 March 2024
  • Capture
  • Costs of CCUS

This study, undertaken on behalf of IEAGHG by Element Energy (now a part of ERM), explores the role of CCS in decarbonising small-scale industry and power generation applications. While relatively under investigated compared to their larger scale counterparts, reaching net zero will be dependent on successfully addressing the emissions from small-scale facilities. The findings from the study will be of interest to the broader energy community but, in particular, should benefit project developers, the finance community and policymakers.

Technical Report

Clean steel an environmental and technoeconomic outlook of a disruptive technology

  • 1 March 2024
  • Capture
  • Costs of CCUS

This study primarily presents a comparative analysis of steelmaking pathways to cost-effectively decarbonise a steel mill, taking a life-cycle perspective on associated environmental impacts. The roll-out of clean steel technologies is envisioned to have a significant implication for support infrastructure. Therefore, a secondary objective of the study is to gain insights into the primary energy and infrastructure implications associated with large-scale deployment of different steel decarbonisation pathways. Clean steel production will likely be more expensive than steel produced today; this poses additional economic strains on steel producers and consumers. Consequently, a third objective is to estimate the price premium that clean steel could command in existing and future markets. Further, this study formulates recommendations for key stakeholders to support the sector and outlines recommendations for further work.

Technical Review

7th Cost Network Proceedings

  • 1 November 2023
  • Costs of CCUS
  • Event Proceedings

The 7th edition of the IEAGHG CCS Cost Network Workshop was hosted at the University of Groningen, Netherlands, on 12-13 April 2023. The purpose of the workshop was to share and discuss the most current information on the costs of carbon capture and storage (CCS) in various applications, as well as the outlook for future CCS costs and deployment. For the first time, this workshop also included a session on the direct capture of CO₂ from the atmosphere. The workshop also sought to identify other key issues or topics related to CCS costs that merit further discussion and study.

Technical Review

9th HTSLCN Meeting Report

  • 21 September 2023
  • Capture
  • Event Proceedings

The 9th High Temperature Solid Looping Cycles Network (HTSLCN) Meeting took place from 14th to 15th March 2023 at Palazzo Farnese in Piacenza, Italy, hosted by the CLEANKER consortium. 82 attendees enjoyed a two-day programme with a total of 28 presentations, the official closure of the CLEANKER project with a visit to the pilot plant, a relaxing dinner and a guided tour in the museum of Palazzo Farnese about the millennial history of the city of Piacenza and its territory, from the preRoman age to the XX century.

Technical Review

Quantifying the Socio-Economic Value of CCS: A Review

  • 3 August 2022
  • Costs of CCUS
  • Public Perception

As policymakers consider options at their disposal to achieve the goals of the Paris Agreement, understanding the socio-economic impacts on local communities and industrial regions is crucial. Integrated assessment models (IAMs) often lack the economic, social and geographic detail to fully reveal the role that CCS and CDR technologies, such as BECCS, can play in national economies – noting that deployment of both CCS and BECCS has long continued to lag expectations. Providing a multi-regional, technology agnostic and transparent quantification of the social value of these technologies may be essential to unlocking this impasse.

Our most recent publications

Our authoritative, peer-reviewed publications cover topics that include carbon capture, transport, storage, monitoring, regulation, and more.

View All Publications
Technical Review

Insurance Coverage for CO₂ Storage Projects

  • 16 August 2024
  • Industry Insights
  • Storage

This report is a focused review of recent developments regarding insurance coverage for carbon dioxide (CO₂) geological storage projects. It seeks to address the following: what companies are offering or planning to offer insurance to CO₂ storage projects, what is the scope and duration of the coverage offered, and does coverage extend to the transportation of CO₂ to the project site? This work and report was prepared by Franz Hiebert.

Technical Review

CO₂ Storage Site Catalogue

  • 8 August 2024
  • Storage

This Technical Review provides an overview of 22 CO₂ storage sites from around the world. These include CO₂-EOR, commercial scale storage sites and a number of pilot and demonstration storage sites in both depleted hydrocarbon reservoirs and saline reservoirs. Its primary aim is to provide a convenient source of collated information with a specific focus on technical information that are in the public domain.

Technical Report

Power CCS: Potential for cost reductions and improvements

  • 5 August 2024
  • Capture
  • Costs of CCUS

CCS, in the context of power CCS technologies, will be an essential component of the portfolio of technologies required to reach net-zero emissions in the power sector. This study explores the potential to reduce the cost and accelerate the uptake of power CCS technologies.

Technical Review

7th Post-Combustion Capture Conference Summary

  • 1 April 2024
  • Capture
  • Event Proceedings

The 7th edition of the Post Combustion Capture Conference (PCCC-7) was held on the 25?28 September 2023 and was jointly hosted by the IEAGHG, U.S. Department of Energy (DOE) and the National Energy Technology Laboratory (NETL) and sponsored by Worley, Shell, and Mitsubishi Heavy Industries. (MHI).

Get the latest CCS news and insights

Get essential news and updates from the CCS sector and the IEAGHG by email.

Can’t find what you are looking for?

Whatever you would like to know, our dedicated team of experts is here to help you. Just drop us an email and we will get back to you as soon as we can.

Contact Us Now