This website will offer limited functionality in this browser. We only support the recent versions of major browsers like Chrome, Firefox, Safari, and Edge.

Technology Collaboration Programme by IEA

Beyond LCOE: Value of technologies in different generation and grid scenarios

Yoga Wienda Pratama, Niall Mac Dowell

Citation: IEAGHG, "Beyond LCOE: Value of technologies in different generation and grid scenarios", 2020-11, September 2020.

Download The Full Publication Now

Publication Overview

Since its introduction, the levelised cost of electricity (LCOE) has become ubiquitous in the evaluation and comparison of power generation technologies. While it is a readily accessible metric, it focuses exclusively on the cost of electricity produced from an asset and neglects to address the provision of ancillary services that are vital for the reliable operation of an electricity grid. This simplification was entirely appropriate for the electricity system of the 20th century, dominated at it was by fossil fuels and nuclear technologies, but it falls well short as a metric to compare technologies in a system to provide net-zero emissions by the mid-21st century. The objective of this study was to evaluate the various concepts that have been proposed as alternatives to LCOE and to explore the potential for a concept that balances completeness and ease of use. As an alternative to LCOE, this study proposes the modified screening curve concept, which shows that, while intermittent renewables have significant value by providing energy/fuel savings, a low-carbon dispatchable technology such as CCUS has critical value by supplying the flexible capacity to deliver security of supply.

Publication Summary

  • This study is aimed at exploring and proposing an alternative concept to the levelised cost of electricity (LCOE), one that can be used to generate a transparent, intuitive and comprehensive approach with which to compare the evolving impact of technologies within an electricity system – rather than simply providing direct technology-technology comparison.
  • LCOE is attractive as a metric for comparing power generation technologies; it is simple to calculate and provides messages that the energy community, whether technologists, project developers or policy makers, can relate to and apply in their decision making. With these attributes, the LCOE concept has become the dominant approach.
  • However, LCOE suffers from well-documented weaknesses and is widely regarded as being poorly suited to the heterogeneous electricity grid of the 21st century. The energy community has been aware of its shortcomings since the early 1990s, with several alternatives having been proposed. Examples of these include the US EIA’s ‘Levelized Avoided Cost of Electricity’ and the IEA’s ‘Value Adjusted LCOE’. While many of the alternatives proposed are excellent, no one method has emerged as being a clear preference to LCOE; they variously suffer from computational complexity, large data requirements or lack of transparency.
  • In addition to providing energy and capacity services, a range of ancillary services are required by the grid. Ancillary services evaluated during the analysis for this study, include those provided by large-scale, synchronous thermal power stations (hydro, nuclear and fossil fuel):
         o Maintaining system frequency (inertia, primary, secondary, and tertiary reserves);
         o Maintaining system voltage; and
         o Restarting the system after black-out.
  • If large-scale, synchronous, fossil-fuelled thermal plants were phased out, the availability of ancillary services that are inherently provided by those technologies becomes limited. In such a scenario, the value of these ancillary services would increase considerably.
  • Of all the services that each technology provides to the system, modelling undertaken for this study indicates that the provision of firm capacity (MW) and energy (MWh) services are the most crucial.
  • Early in the study, a new concept, the ‘Levelised Cost of Electricity Service’ (or ‘LCES’), was developed. While demonstrating great promised for comparing the impact of technologies within an electricity system – it addresses both thermal and iRES technologies, satisfies important ancillary services and covers short and long-term time horizons – the LCES suffered from the same downsides as other concepts before it. With its computational complexity and significant data needs, LCES would be unlikely to replace LCOE as the metric of choice.
  • However, an existing concept which assesses the capacity and the energy services of different technologies is the screening curve. While this represents a well-established method to compare thermal generation technologies, it is not suitable for the evaluation of intermittent renewable energy sources (iRES) and storage technologies.
  • But this limitation can be overcome. Incorporating the effective capacity factors1 of the technologies in the curve can reflect the capacity and energy services provided by iRES.
  • Storage technologies can also be incorporated in the approach by limiting their maximum hours of discharge to the curtailed hours of the electricity source (to represent the time the technology needs to charge) and to the maximum hours of operation (which corresponds to the time needed to charge and discharge).
  • Applying these rules allows the screening curve approach to be used to evaluate the capacity and energy value of dispatchable and non-dispatchable power generation technologies, as well as energy storage technologies.
  • This is an accessible approach to evaluate the impact of arbitrary levels of all power generation technologies on the total system cost. The proposed concept can also be used to estimate the level of economic deployment of technologies considered and to determine the optimal role the technologies can play.
  • Although the optimal energy share of iRES can be significant, the role of dispatchable plants remains critical in the system to meet the electricity demand.
  • This study proposes the modified screening curve concept as an alternative concept to LCOE2. It shows that iRES have significant value by providing energy/fuel savings for the electricity system, with dispatchable technologies having critical value by supplying capacity for security of supply.

Download Publication

Access the complete publication in PDF format.

Download Now

Related Publications

View similar publications.

View All Publications
Technical Report

Power CCS: Potential for cost reductions and improvements

  • 5 August 2024
  • Capture
  • Costs of CCUS

CCS, in the context of power CCS technologies, will be an essential component of the portfolio of technologies required to reach net-zero emissions in the power sector. This study explores the potential to reduce the cost and accelerate the uptake of power CCS technologies.

Technical Review

7th Post-Combustion Capture Conference Summary

  • 1 April 2024
  • Capture
  • Event Proceedings

The 7th edition of the Post Combustion Capture Conference (PCCC-7) was held on the 25?28 September 2023 and was jointly hosted by the IEAGHG, U.S. Department of Energy (DOE) and the National Energy Technology Laboratory (NETL) and sponsored by Worley, Shell, and Mitsubishi Heavy Industries. (MHI).

Technical Report

Techno-Economic Assessment of Small-Scale Carbon Capture for Industrial and Power Systems

  • 1 March 2024
  • Capture
  • Costs of CCUS

This study, undertaken on behalf of IEAGHG by Element Energy (now a part of ERM), explores the role of CCS in decarbonising small-scale industry and power generation applications. While relatively under investigated compared to their larger scale counterparts, reaching net zero will be dependent on successfully addressing the emissions from small-scale facilities. The findings from the study will be of interest to the broader energy community but, in particular, should benefit project developers, the finance community and policymakers.

Technical Report

Clean steel an environmental and technoeconomic outlook of a disruptive technology

  • 1 March 2024
  • Capture
  • Costs of CCUS

This study primarily presents a comparative analysis of steelmaking pathways to cost-effectively decarbonise a steel mill, taking a life-cycle perspective on associated environmental impacts. The roll-out of clean steel technologies is envisioned to have a significant implication for support infrastructure. Therefore, a secondary objective of the study is to gain insights into the primary energy and infrastructure implications associated with large-scale deployment of different steel decarbonisation pathways. Clean steel production will likely be more expensive than steel produced today; this poses additional economic strains on steel producers and consumers. Consequently, a third objective is to estimate the price premium that clean steel could command in existing and future markets. Further, this study formulates recommendations for key stakeholders to support the sector and outlines recommendations for further work.

Technical Review

Cost Network Proceedings

  • 1 November 2023
  • Costs of CCUS
  • Event Proceedings

The 7th edition of the IEAGHG CCS Cost Network Workshop was hosted at the University of Groningen, Netherlands, on 12-13 April 2023. The purpose of the workshop was to share and discuss the most current information on the costs of carbon capture and storage (CCS) in various applications, as well as the outlook for future CCS costs and deployment. For the first time, this workshop also included a session on the direct capture of CO2 from the atmosphere. The workshop also sought to identify other key issues or topics related to CCS costs that merit further discussion and study.

Technical Review

9th HTSLCN Meeting Report

  • 21 September 2023
  • Capture
  • Event Proceedings

The 9th High Temperature Solid Looping Cycles Network (HTSLCN) Meeting took place from 14th to 15th March 2023 at Palazzo Farnese in Piacenza, Italy, hosted by the CLEANKER consortium. 82 attendees enjoyed a two-day programme with a total of 28 presentations, the official closure of the CLEANKER project with a visit to the pilot plant, a relaxing dinner and a guided tour in the museum of Palazzo Farnese about the millennial history of the city of Piacenza and its territory, from the preRoman age to the XX century.

Technical Review

Quantifying the Socio-Economic Value of CCS: A Review

  • 3 August 2022
  • Costs of CCUS
  • Public Perception

As policymakers consider options at their disposal to achieve the goals of the Paris Agreement, understanding the socio-economic impacts on local communities and industrial regions is crucial. Integrated assessment models (IAMs) often lack the economic, social and geographic detail to fully reveal the role that CCS and CDR technologies, such as BECCS, can play in national economies – noting that deployment of both CCS and BECCS has long continued to lag expectations. Providing a multi-regional, technology agnostic and transparent quantification of the social value of these technologies may be essential to unlocking this impasse.

Our most recent publications

Our authoritative, peer-reviewed publications cover topics that include carbon capture, transport, storage, monitoring, regulation, and more.

View All Publications
Technical Report

Geological Storage of CO2: Seal Integrity Review

  • 10 September 2024
  • Storage

This comprehensive seal integrity review, undertaken by CO2CRC on behalf of IEAGHG, provides a detailed, updated exploration of the critical aspects of seal potential in the context of the geological storage of CO2.

Technical Review

Insurance Coverage for CO2 Storage Projects

  • 16 August 2024
  • Industry Insights
  • Storage

This report is a focused review of recent developments regarding insurance coverage for carbon dioxide (CO2) geological storage projects. It seeks to address the following: what companies are offering or planning to offer insurance to CO2 storage projects, what is the scope and duration of the coverage offered, and does coverage extend to the transportation of CO2 to the project site? This work and report was prepared by Franz Hiebert.

Technical Review

CO2 Storage Site Catalogue

  • 8 August 2024
  • Storage

This Technical Review provides an overview of 22 CO2 storage sites from around the world. These include CO2-EOR, commercial scale storage sites and a number of pilot and demonstration storage sites in both depleted hydrocarbon reservoirs and saline reservoirs. Its primary aim is to provide a convenient source of collated information with a specific focus on technical information that are in the public domain.

Technical Report

Power CCS: Potential for cost reductions and improvements

  • 5 August 2024
  • Capture
  • Costs of CCUS

CCS, in the context of power CCS technologies, will be an essential component of the portfolio of technologies required to reach net-zero emissions in the power sector. This study explores the potential to reduce the cost and accelerate the uptake of power CCS technologies.

Technical Review

7th Post-Combustion Capture Conference Summary

  • 1 April 2024
  • Capture
  • Event Proceedings

The 7th edition of the Post Combustion Capture Conference (PCCC-7) was held on the 25?28 September 2023 and was jointly hosted by the IEAGHG, U.S. Department of Energy (DOE) and the National Energy Technology Laboratory (NETL) and sponsored by Worley, Shell, and Mitsubishi Heavy Industries. (MHI).

Technical Report

Techno-Economic Assessment of Small-Scale Carbon Capture for Industrial and Power Systems

  • 1 March 2024
  • Capture
  • Costs of CCUS

This study, undertaken on behalf of IEAGHG by Element Energy (now a part of ERM), explores the role of CCS in decarbonising small-scale industry and power generation applications. While relatively under investigated compared to their larger scale counterparts, reaching net zero will be dependent on successfully addressing the emissions from small-scale facilities. The findings from the study will be of interest to the broader energy community but, in particular, should benefit project developers, the finance community and policymakers.

Technical Report

Clean steel an environmental and technoeconomic outlook of a disruptive technology

  • 1 March 2024
  • Capture
  • Costs of CCUS

This study primarily presents a comparative analysis of steelmaking pathways to cost-effectively decarbonise a steel mill, taking a life-cycle perspective on associated environmental impacts. The roll-out of clean steel technologies is envisioned to have a significant implication for support infrastructure. Therefore, a secondary objective of the study is to gain insights into the primary energy and infrastructure implications associated with large-scale deployment of different steel decarbonisation pathways. Clean steel production will likely be more expensive than steel produced today; this poses additional economic strains on steel producers and consumers. Consequently, a third objective is to estimate the price premium that clean steel could command in existing and future markets. Further, this study formulates recommendations for key stakeholders to support the sector and outlines recommendations for further work.

Get the latest CCS news and insights

Get essential news and updates from the CCS sector and the IEAGHG by email.

Can’t find what you are looking for?

Whatever you would like to know, our dedicated team of experts is here to help you. Just drop us an email and we will get back to you as soon as we can.

Contact Us Now