This website will offer limited functionality in this browser. We only support the recent versions of major browsers like Chrome, Firefox, Safari, and Edge.

Technology Collaboration Programme by IEA

Carbon Dioxide Capture and Storage in the Clean Development Mechanism: Assessing market effects of inclusion

Paul Zakkour (project manager), Emily King, Greg Cook, Naoko Maruyama, Sandeep Rana

Citation: IEAGHG, "Carbon Dioxide Capture and Storage in the Clean Development Mechanism: Assessing market effects of inclusion", 2008-13, November 2008.

Download The Full Publication Now

Publication Overview

This report provides analysis on the potential impacts that inclusion of carbon dioxide capture and storage (CCS) as a clean development mechanism (CDM) project activity could have on the global carbon market. It has been undertaken in response to concerns raised about the possibility that CCS inclusion could result in the flooding of the carbon market with certified emission reduction (CERs) from CCS project activities, given the enormous scale of emission reductions potentially achievable.

Publication Summary

The research presents detailed estimates of emissions from natural gas processing in non-Annex I countries, coupled with detailed bottom-up cost estimates, which represents a new and important contribution to the debate on CCS inclusion as a CDM project activity. Furthermore, the detailed cost consideration of other early opportunity projects also represents a useful development. The assessment of potential carbon market effects also provides a new contribution to the current debate on the matter.

Analysis undertaken suggests that in 2012, CCS early opportunities could have technical potential to deploy around 1.24 GtCO2, comprising 219 MtCO2 in natural gas processing and 1020 MtCO2 in other sectors. However, market assessments undertaken suggest that no CCS would be deployed before 2012 at current estimates of CER supply and demand over the Kyoto Commitment period (estimated to be around 360 MCERs per year to 2012). The research suggests CCS would only become competitive with other CDM candidate options at the margin if supply (or demand) exceeds about 520 MCERs per year to 2012.

Download Publication

Access the complete publication in PDF format.

Download Now

Related Publications

View similar publications.

View All Publications
Technical Report

The Role of Indices in Assessing the Maturity of CCUS Technologies and their Readiness for Deployment

  • 1 February 2024
  • Industry Insights

This study was undertaken on behalf of IEAGHG by Foresight Transitions Ltd. While a technology may be technically mature, it has become increasingly clear that the technology may not necessarily be considered commercially ‘bankable’ by investors. In this study, the potential for an index or indices to provide that confidence was explored. The findings from the study will be of interest to the broader energy community but, in particular, should benefit technology developers, CCUS end users, investors and policymakers.

Technical Report

International Standards and Testing for Novel Carbonaceous Building Materials

  • 1 December 2023
  • Policy & Regulation
  • Utilisation

Over 4 billion tonnes of cement are produced each year, equating to approximately 8% of global anthropogenic CO2 emissions, and this industry will continue to grow with the expansion of the built environment at a time that emissions need to be reduced. The utilisation or reduction of CO2 within cement, concrete and building materials could be a valuable way to contribute to emissions reductions in the sector , but there are several barriers, including the current state of standards, regulations and policies. This study will provide useful information for the technical and research community, the CCUS industry, the construction industry, and policymakers, providing an unbiased and non-prescriptive evaluation of international standards and testing relevant to novel carbonaceous building materials to address some of those barriers. The market potential for CO2 utilisation processes in the construction industry is also investigated, and the methods for certifying and measuring embodied carbon content of carbonated building materials is evaluated and the challenges therein.

Methologies and Technologies for Mitigation

  • 1 December 2023
  • Industry Insights

The driver behind this study is to develop a report built on the on the previous IEAGHG report on methods of leakage mitigation (2007/11). The proposed study should focus on current mitigation and remediation methods that may be applied or considered in site specific conditions in the event of unpredicted CO2 migration. Each geological storage site will have an adaptive site specific monitoring plan, based on a risk assessment. Detection of a significant irregularity may involve supplementing the monitoring program, in order to detect a possible leak and if necessary engaging mitigation measures.

Technical Review

A bibliometric analysis of GHGT abstract submissions

  • 14 June 2023
  • Industry Insights

This technical review provides an insight into how the focus of research in the field of Carbon Capture, Utilisation and Storage (CCUS) has evolved across a decade, from 2012–2022. It is designed to help understand where the most research has been conducted, and to see where CCUS research is going.

Technical Report

Integrating CCS in international cooperation and carbon markets under Article 6 of the Paris Agreement

  • 18 January 2023
  • Policy & Regulation

This work assesses the status of and outlooks for international cooperation under Article 6 of the Paris Agreement and considers how approaches could support the deployment of carbon capture and storage (CCS). It provides an up-to-date look at the Article 6 rules, the types of markets and mechanisms that could evolve, and the units that could be traded. It then considers how Article 6 could apply to CCS through linked emissions trading systems, crediting systems and alternative approaches.

Technical Report

Applying ISO Standards to Geologic Storage and EOR Projects

  • 1 September 2022
  • Policy & Regulation
  • Storage

The work aims to summarise and synthesise the two ISO Standards relevant to the geological storage of CO2: – ISO 27914:2017 (‘Carbon dioxide capture, transportation and geological storage – Geological storage’) and ISO 27916:2019 (‘Carbon dioxide capture, transportation and geological storage – Carbon dioxide storage using enhanced oil recovery (CO2-EOR)’) – to provide a high-level understanding of the content into an easily digestible format. By comparison with international regulatory frameworks, and providing case studies of how applicable the standards are to real CO2 storage projects, the study provides a comprehensive overview and concludes on the usefulness of the documents in supporting the implementation of CCUS projects. For the purposes of this overview, the standards will hereafter be referred to as ISO 27914 and ISO 27916

CCUS in national GHG inventories

  • 28 June 2021
  • Policy & Regulation

This report builds upon previous IEAGHG studies on the topic of carbon capture and utilisation (CCU) in order to assess the potential of a portfolio of CCU technologies to contribute towards Japan’s climate change mitigation goals in 2030 and 2050.

Exporting CO2 for Offshore Storage – The London Protocol’s Export Amendment and Associated Guidelines and Guidance

  • 12 April 2021
  • Policy & Regulation
  • Storage

The London Convention and London Protocol are the global treaties that protect the marine environment from pollution caused by the dumping of wastes. Since 2006, the London Protocol has provided a basis in international environmental law to allow carbon dioxide (CO2) storage beneath the seabed when it is safe to do so, and to regulate the injection of CO2 into sub-seabed geological formations for permanent isolation. However, Article 6 of the London Protocol prohibits the export of waste or other matter for dumping in the marine environment. Therefore in 2019, Contracting Parties to the London Protocol adopted a resolution to allow provisional application of the 2009 amendment to Article 6 of the Protocol to allow export of CO2 for storage in sub-seabed geological formations in advance of its ratification, which was progressing slowly.

Technical Report

CCS and the Sustainable Development Goals

  • 15 December 2020
  • Policy & Regulation

The overall objective of this assessment was to improve the availability and accessibility of information regarding the relevance of CCS in contributing to the achievement of the Sustainable Development Goals. The primary objective was achieved through the completion of three key goals: <ol> <!– wp:list-item –><!– wp:list-item –><li>Collation of existing information on impacts of CCS on specific targets of the 17 SDGs, using the rating, scoring and information assessment as per IPCC’s SR1.5,</li><!– /wp:list-item –><!– /wp:list-item –> <!– wp:list-item –><!– wp:list-item –><li>Articulation of specific gaps in information, and</li><!– /wp:list-item –><!– /wp:list-item –> </ol> Proposal of a path forward by providing a prioritised lists of gap closures.There is a growing body of literature orientated towards converting climate action into policies directed towards implementation of SDGs. There is also a trend of material becoming available examining the interaction of technologies and sectors against SDGs. CCS remains a complex technological solution to climate change, and public understanding of the technology remains low. This study can help to substantiate the wider value of CCS, but it can also highlight points of attention/action on potentially negative interactions with specific SDGs.

Technical Report

Review of Constructability and Operational Challenges faced by CCUS projects

  • 9 September 2020
  • Industry Insights

IEAGHG has commissioned several technical studies linked to large CCS projects1. Although constructability and operational challenges have been identified in previous IEAGHG reports, some aspects were unique due to the locations where the large CCS projects were implemented. These included the status of the initial facilities and other techno-economic and financial aspects of the specific CCUS projects. IEAGHG identified the need to provide a guide on constructability and operation for new CCS users. The objective of this study is to collect information from CCS projects to support the decisions during the transition from the planning to the execution phase. This study analysed a complete list of large CCUS projects from which relevant experience could be extracted. The projects were divided into three categories: operating projects; under construction or at advanced development; and cancelled projects. Based on the analysed projects, this study has delivered an assessment of potential key areas for success, and a decision tool guide for future projects

Our most recent publications

Our authoritative, peer-reviewed publications cover topics that include carbon capture, transport, storage, monitoring, regulation, and more.

View All Publications
Technical Review

7th Post-Combustion Capture Conference Summary

  • 1 April 2024
  • Capture
  • Event Proceedings

The 7th edition of the Post Combustion Capture Conference (PCCC-7) was held on the 25?28 September 2023 and was jointly hosted by the IEAGHG, U.S. Department of Energy (DOE) and the National Energy Technology Laboratory (NETL) and sponsored by Worley, Shell, and Mitsubishi Heavy Industries. (MHI).

Technical Report

Techno-Economic Assessment of Small-Scale Carbon Capture for Industrial and Power Systems

  • 1 March 2024
  • Capture
  • Costs of CCUS

This study, undertaken on behalf of IEAGHG by Element Energy (now a part of ERM), explores the role of CCS in decarbonising small-scale industry and power generation applications. While relatively under investigated compared to their larger scale counterparts, reaching net zero will be dependent on successfully addressing the emissions from small-scale facilities. The findings from the study will be of interest to the broader energy community but, in particular, should benefit project developers, the finance community and policymakers.

Technical Report

Clean steel an environmental and technoeconomic outlook of a disruptive technology

  • 1 March 2024
  • Capture
  • Costs of CCUS

This study primarily presents a comparative analysis of steelmaking pathways to cost-effectively decarbonise a steel mill, taking a life-cycle perspective on associated environmental impacts. The roll-out of clean steel technologies is envisioned to have a significant implication for support infrastructure. Therefore, a secondary objective of the study is to gain insights into the primary energy and infrastructure implications associated with large-scale deployment of different steel decarbonisation pathways. Clean steel production will likely be more expensive than steel produced today; this poses additional economic strains on steel producers and consumers. Consequently, a third objective is to estimate the price premium that clean steel could command in existing and future markets. Further, this study formulates recommendations for key stakeholders to support the sector and outlines recommendations for further work.

Technical Report

The Role of Indices in Assessing the Maturity of CCUS Technologies and their Readiness for Deployment

  • 1 February 2024
  • Industry Insights

This study was undertaken on behalf of IEAGHG by Foresight Transitions Ltd. While a technology may be technically mature, it has become increasingly clear that the technology may not necessarily be considered commercially ‘bankable’ by investors. In this study, the potential for an index or indices to provide that confidence was explored. The findings from the study will be of interest to the broader energy community but, in particular, should benefit technology developers, CCUS end users, investors and policymakers.

Technical Review

6th International Workshop on Offshore Geologic CO2 Storage

  • 1 December 2023
  • Event Proceedings
  • Storage

The 6th International Workshop on Offshore Geologic CO2 Storage was held in Aberdeen on 13-14 September. Organised with the University of Texas and hosted by the University of Aberdeen. The loca on was very appropriate as we were co-hosted and sponsored by Storegga who leads the Acorn project nearby in Scotland. This project had been recently announced by the UK government as a Track 2 Cluster project. This 6th workshop had 190 delegates (60 in-person and 130 virtual) from 35 countries, with a good mix of industry, researchers and regulators.

Methologies and Technologies for Mitigation

  • 1 December 2023
  • Industry Insights

The driver behind this study is to develop a report built on the on the previous IEAGHG report on methods of leakage mitigation (2007/11). The proposed study should focus on current mitigation and remediation methods that may be applied or considered in site specific conditions in the event of unpredicted CO2 migration. Each geological storage site will have an adaptive site specific monitoring plan, based on a risk assessment. Detection of a significant irregularity may involve supplementing the monitoring program, in order to detect a possible leak and if necessary engaging mitigation measures.

Technical Report

International Standards and Testing for Novel Carbonaceous Building Materials

  • 1 December 2023
  • Policy & Regulation
  • Utilisation

Over 4 billion tonnes of cement are produced each year, equating to approximately 8% of global anthropogenic CO2 emissions, and this industry will continue to grow with the expansion of the built environment at a time that emissions need to be reduced. The utilisation or reduction of CO2 within cement, concrete and building materials could be a valuable way to contribute to emissions reductions in the sector , but there are several barriers, including the current state of standards, regulations and policies. This study will provide useful information for the technical and research community, the CCUS industry, the construction industry, and policymakers, providing an unbiased and non-prescriptive evaluation of international standards and testing relevant to novel carbonaceous building materials to address some of those barriers. The market potential for CO2 utilisation processes in the construction industry is also investigated, and the methods for certifying and measuring embodied carbon content of carbonated building materials is evaluated and the challenges therein.

Technical Review

Monitoring Network Meeting Report

  • 1 December 2023
  • Event Proceedings
  • Storage

The IEAGHG Monitoring Network aims to assess new technologies and techniques in the monitoring of CO2 storage, determine the limitations, accuracy and applicability of monitoring techniques, disseminate information from research and pilot storage projects around the world, develop extensive monitoring guidelines for the different sub-categories of geological storage; oil and gas fields, unmineable coal seams, and saline aquifers covering the differing conditions and reservoir properties encountered globally as well as to engage with relevant regulatory bodies.

Technical Report

Components of CCS Infrastructure – Interim CO2 Holding Options

  • 27 November 2023
  • Storage
  • Transport

This work, undertaken on behalf of IEAGHG by TNO and SINTEF, provides an overview of temporary / interim CO2 storage, or ‘holding’, options (also called buffers) and investigates the role of buffer storage and its potential to create flexible and robust carbon capture and storage (CCS) chains. The report looks at current and emerging buffer technologies, conducts simulations to demonstrate the temporary storage required for given flow-rate scenarios and discusses the impact of buffer capacity on transport costs. In the report, the storage requested in the chain for normal operation is presented as " temporary storage" and storage to give buffer capacity is presented as " buffer storage". This report has focussed on buffering at the emitter site. The results of this study will benefit CO2 storage site project developers, operators, financiers and regulators.

Technical Report

Classification of Total Storage Resources and Storage Coefficients

  • 1 November 2023
  • Storage

The CO2 Storage Resources Management System (SRMS) is a classification scheme to quantify, classify and categorise CO2 storage resources. It comprises ‘total storage resources’, which are understood as maximum (theoretical) storage quantities that could ever be accommodated in the subsurface. Comprising maximum mobile CO2 in structural/stratigraphic traps, maximum residually trapped CO2 in other parts of the formation, and maximum dissolution potential in remaining formation water. ‘Storable quantities’ are understood as accessible from one or several current or future projects. It is the sum of capacity, contingent and prospective resources. The concept of ‘storage coefficient’ ‘E’ is the ratio of the subsurface volume of CO2 storable quantities to either the total storage resources or the pore volume. The calculation is arguably complicated as E is impacted by lithological heterogeneity, trapping structures, boundary conditions, injection rates, well spacing, fluid properties etc. Due to its complexity, there is much controversy on how to estimate E, with some arguing it should not be used at all and that reservoir simulation is a better path. However, estimates for E are used in most regional mapping studies. This study explores storage resource classification schemes and their evolution in understanding, the calculation of storage resources and the storage co-efficient. This is explored in terms of calculating E for CO2 storage sites, through flow modelling and analytical solutions.

Get the latest CCS news and insights

Get essential news and updates from the CCS sector and the IEAGHG by email.

"*" indicates required fields

Can’t find what you are looking for?

Whatever you would like to know, our dedicated team of experts is here to help you. Just drop us an email and we will get back to you as soon as we can.

Contact Us Now