This website will offer limited functionality in this browser. We only support the recent versions of major browsers like Chrome, Firefox, Safari, and Edge.

Technology Collaboration Programme by IEA

CO₂ Utilisation: Hydrogenation Pathways

Antonia Matttos, Amelia Mirchell

Citation: IEAGHG, "CO₂ Utilisation: Hydrogenation Pathways ", 2021-03, November 2021.

Download The Full Publication Now

Publication Overview

The aim of this study is to assess the feasibility of select carbon capture and utilisation (CCU) routes based upon CO₂ conversion through hydrogenation, in terms of their climate change mitigation potential. The results of this study will be of interest to organisations/individuals involved with climate-change scenario modelling, as well as RD&D financial sponsors. The commodities selected for investigation were methanol, formic acid, and middle distillate hydrocarbons (synthetic fuels: diesel, gasoline, jet fuel), with a focus on catalytic hydrogenation pathways. Results of CO₂ emissions, costs and energy consumption for formic acid, however, will not be presented in detail in this Overview, as the analysis has shown that the abatement is limited to 2 MtCO₂ due to the small market size. (Results for formic acid are available in the full report.)

Publication Summary

  • Hydrogenation routes require a supply of hydrogen and CO₂, and the origins of these feedstocks impact the overall cost and emissions of CCU pathways. Hydrogen is the most significant cost and emission component for both methanol and middle distillate hydrocarbon CCU production routes.
  • Production of commodities via CCU routes is more expensive than fossil routes. All realistic combinations of feedstocks result in higher costs than the counterfactual route under both near- (2020s) and long-term (2050s) assumptions. In the near-term, CCU commodities were found to be at least twice the cost of their fossil counterparts. In the long-term, cost premiums can decrease significantly due to reductions in the cost of green hydrogen and CO₂ capture.
  • Economic competitiveness of CCU routes is reliant on a ‘cost of emission’ being applied. For the optimal pathways considered, cost parity could be achieved in the long-term by implementing a cost of emissions between USD 120-225/tCO₂.
  • CCU can offer a lower emission commodity production pathway provided a low-emission electricity source is used for green hydrogen production. Using grid electricity (representative of current European grid mixes) for electrolysis is expected to result in CCU methanol and middle distillate hydrocarbon routes having greater emissions than their fossil counterparts, the same applies to the use of unabated fossil hydrogen production.
  • The method of accounting for utilised CO₂ has important consequences. For routes with higher production emissions than their counterfactual, CCU commodities can only claim to have lower emissions than the counterfactual commodities if they are able to account for the utilised CO₂ as offsetting some of their production or end-of-life emissions.
  • Avoiding > 1 GtCO₂ requires very high levels of market penetration. CCU methanol and middle distillate hydrocarbons have the potential to abate over 1 GtCO₂ but only if methanol captures the entirety of the current market and then expands into the heavy-duty trucks market plus the plastics markets, and if middle distillate hydrocarbons capture the entirety of today’s aviation fuels and heavy-duty trucks market. Formic acid does not have the potential to reach 1 GtCO₂ as even if the CCU product were to penetrate the entire formic acid market, the abatement currently achievable is limited to approximately 2 MtCO₂. • Energy demands might become a barrier limiting large-scale CCU deployment. Under the investigated ‘ambitious CCU’ scenario, middle distillate hydrocarbons would require about 26,000 TWh of electricity, almost the entire current electricity production globally.
  • CCU pathways must be designed carefully to ensure lower life cycle emissions than the counterfactual. Co-location of assets may reduce costs, particularly in regions with high potential for renewable electricity. CCU could provide an attractive solution in regions with limited CO₂ storage, or with cost or public acceptance challenges for carbon capture and storage (CCS).
  • Recommendations: ▪ Lab scale research and pilot-demonstrations are necessary to address technical barriers. ▪ More life cycle assessment (LCA) and techno-economic assessment (TEA) studies are needed, especially on hydrogen and renewable electricity production. ▪ Policies are required to mandate the use of low-carbon products and to increase the cost-competitiveness of CCU products. ▪ Streamlining approval processes and standards could help enable timely market entry for new CCU products. ▪ Further clarity and global consistency of the accounting of CO₂ in CCU routes is needed. ▪ CCU pathways can benefit from advances in CO₂ capture and hydrogen production as well as the sharing of infrastructure with large-scale CCS projects.

Download Publication

Access the complete publication in PDF format.

Download Now

Related Publications

View similar publications.

View All Publications
Technical Report

Power CCS: Potential for cost reductions and improvements

  • 5 August 2024
  • Capture
  • Costs of CCUS

CCS, in the context of power CCS technologies, will be an essential component of the portfolio of technologies required to reach net-zero emissions in the power sector. This study explores the potential to reduce the cost and accelerate the uptake of power CCS technologies.

Technical Report

Techno-Economic Assessment of Small-Scale Carbon Capture for Industrial and Power Systems

  • 1 March 2024
  • Capture
  • Costs of CCUS

This study, undertaken on behalf of IEAGHG by Element Energy (now a part of ERM), explores the role of CCS in decarbonising small-scale industry and power generation applications. While relatively under investigated compared to their larger scale counterparts, reaching net zero will be dependent on successfully addressing the emissions from small-scale facilities. The findings from the study will be of interest to the broader energy community but, in particular, should benefit project developers, the finance community and policymakers.

Technical Report

Clean steel an environmental and technoeconomic outlook of a disruptive technology

  • 1 March 2024
  • Capture
  • Costs of CCUS

This study primarily presents a comparative analysis of steelmaking pathways to cost-effectively decarbonise a steel mill, taking a life-cycle perspective on associated environmental impacts. The roll-out of clean steel technologies is envisioned to have a significant implication for support infrastructure. Therefore, a secondary objective of the study is to gain insights into the primary energy and infrastructure implications associated with large-scale deployment of different steel decarbonisation pathways. Clean steel production will likely be more expensive than steel produced today; this poses additional economic strains on steel producers and consumers. Consequently, a third objective is to estimate the price premium that clean steel could command in existing and future markets. Further, this study formulates recommendations for key stakeholders to support the sector and outlines recommendations for further work.

Technical Report

International Standards and Testing for Novel Carbonaceous Building Materials

  • 1 December 2023
  • Policy & Regulation
  • Utilisation

Over 4 billion tonnes of cement are produced each year, equating to approximately 8% of global anthropogenic CO₂ emissions, and this industry will continue to grow with the expansion of the built environment at a time that emissions need to be reduced. The utilisation or reduction of CO₂ within cement, concrete and building materials could be a valuable way to contribute to emissions reductions in the sector , but there are several barriers, including the current state of standards, regulations and policies. This study will provide useful information for the technical and research community, the CCUS industry, the construction industry, and policymakers, providing an unbiased and non-prescriptive evaluation of international standards and testing relevant to novel carbonaceous building materials to address some of those barriers. The market potential for CO₂ utilisation processes in the construction industry is also investigated, and the methods for certifying and measuring embodied carbon content of carbonated building materials is evaluated and the challenges therein.

Technical Review

7th Cost Network Proceedings

  • 1 November 2023
  • Costs of CCUS
  • Event Proceedings

The 7th edition of the IEAGHG CCS Cost Network Workshop was hosted at the University of Groningen, Netherlands, on 12-13 April 2023. The purpose of the workshop was to share and discuss the most current information on the costs of carbon capture and storage (CCS) in various applications, as well as the outlook for future CCS costs and deployment. For the first time, this workshop also included a session on the direct capture of CO₂ from the atmosphere. The workshop also sought to identify other key issues or topics related to CCS costs that merit further discussion and study.

Technical Report

Prospective Integration of Geothermal Energy with Carbon Capture and Storage

  • 23 August 2023
  • Storage
  • Utilisation

The aim of the study is to provide a dispassionate review and overview of scenarios where geothermal energy and CO₂ utilisation and storage technologies can be combined for mutual benefit and contribute to Net Zero targets. Sourced from a rich body of literature from global research institutes and some demonstration projects many of the concepts identified have been conceptualised over the past 20 years and are still in the early concept stage. These concepts have been categorised, described and evaluated using qualitative and quantitative methods. And a map based screening exercise useful for initial evaluation of areas suitable for combined synergies has been undertaken.

Technical Review

Quantifying the Socio-Economic Value of CCS: A Review

  • 3 August 2022
  • Costs of CCUS
  • Public Perception

As policymakers consider options at their disposal to achieve the goals of the Paris Agreement, understanding the socio-economic impacts on local communities and industrial regions is crucial. Integrated assessment models (IAMs) often lack the economic, social and geographic detail to fully reveal the role that CCS and CDR technologies, such as BECCS, can play in national economies – noting that deployment of both CCS and BECCS has long continued to lag expectations. Providing a multi-regional, technology agnostic and transparent quantification of the social value of these technologies may be essential to unlocking this impasse.

Our most recent publications

Our authoritative, peer-reviewed publications cover topics that include carbon capture, transport, storage, monitoring, regulation, and more.

View All Publications
Technical Review

Insurance Coverage for CO₂ Storage Projects

  • 16 August 2024
  • Industry Insights
  • Storage

This report is a focused review of recent developments regarding insurance coverage for carbon dioxide (CO₂) geological storage projects. It seeks to address the following: what companies are offering or planning to offer insurance to CO₂ storage projects, what is the scope and duration of the coverage offered, and does coverage extend to the transportation of CO₂ to the project site? This work and report was prepared by Franz Hiebert.

Technical Review

CO₂ Storage Site Catalogue

  • 8 August 2024
  • Storage

This Technical Review provides an overview of 22 CO₂ storage sites from around the world. These include CO₂-EOR, commercial scale storage sites and a number of pilot and demonstration storage sites in both depleted hydrocarbon reservoirs and saline reservoirs. Its primary aim is to provide a convenient source of collated information with a specific focus on technical information that are in the public domain.

Technical Report

Power CCS: Potential for cost reductions and improvements

  • 5 August 2024
  • Capture
  • Costs of CCUS

CCS, in the context of power CCS technologies, will be an essential component of the portfolio of technologies required to reach net-zero emissions in the power sector. This study explores the potential to reduce the cost and accelerate the uptake of power CCS technologies.

Technical Review

7th Post-Combustion Capture Conference Summary

  • 1 April 2024
  • Capture
  • Event Proceedings

The 7th edition of the Post Combustion Capture Conference (PCCC-7) was held on the 25?28 September 2023 and was jointly hosted by the IEAGHG, U.S. Department of Energy (DOE) and the National Energy Technology Laboratory (NETL) and sponsored by Worley, Shell, and Mitsubishi Heavy Industries. (MHI).

Get the latest CCS news and insights

Get essential news and updates from the CCS sector and the IEAGHG by email.

Can’t find what you are looking for?

Whatever you would like to know, our dedicated team of experts is here to help you. Just drop us an email and we will get back to you as soon as we can.

Contact Us Now