Measurement, reporting and verification and accounting for carbon dioxide removal in the context of both project-based approaches and national greenhouse gas inventories
- 15 October 2024
- Industry Insights
- Policy & Regulation
This website will offer limited functionality in this browser. We only support the recent versions of major browsers like Chrome, Firefox, Safari, and Edge.
John Gale
Citation: IEAGHG, "ReCAP Project Understanding Cost of Retrofitting", 2017-TR8, August 2017.
The main purpose of the study was to evaluate the cost of retrofitting CO₂ capture in a range of refinery types typical of those found in Europe. These included bo0th simple and high complexity refineries covering typical European refinery capacities from 100,000 to 350,000 bbl/d. The assessments performed in this report focused on retrofit costs including modifications in the refineries, interconnections, and additional CHP and utility facilities. The main focus of the study was on CO₂ capture from refinery Base Case 4, which was considered to be the most relevant reference for existing European refineries of interest for CO₂ capture retrofit. Considering the large number of cases (16) and their complexity, a hybrid methodology is used to evaluate the cost of the sections (CO₂ capture and compression, utilities, and interconnecting) of the concept. In this approach, four of the 16 capture cases were selected to represent a wide range of CO₂ capture capacity and flue gas CO₂ content. In each case, detailed assessments were undertaken. These detailed cost assessments form, based on subsequent scaling, the basis for the assessment of the other cases. The scaling equations have a larger purpose in that they can be used by refineries/policy experts to evaluate capital costs of retrofitting CO₂ capture to refineries of interest.
The assessments performed in this report focused on retrofit costs including modifications in the refineries, interconnections, and additional CHP and utility facilities. The main focus of the study was on CO2 capture from refinery Base Case 4, which was considered to be the most relevant reference for existing European refineries of interest for CO2 capture retrofit. Considering the large number of cases (16) and their complexity, a hybrid methodology is used to evaluate the cost of the sections (CO2 capture and compression, utilities, and interconnecting) of the concept. In this approach, four of the 16 capture cases were selected to represent a wide range of CO2 capture capacity and flue gas CO2 content. In each case, detailed assessments were undertaken. These detailed cost assessments form, based on subsequent scaling, the basis for the assessment of the other cases. The scaling equations have a larger purpose in that they can be used by refineries/policy experts to evaluate capital costs of retrofitting CO2 capture to refineries of interest.
The results of the cost evaluation of the 16 CO2 capture cases shows that the cost of retrofitting CO2 capture lies between 160 and 210 $/tCO2,avoided as shown in Figure 6. These estimates are significantly
Our authoritative, peer-reviewed publications cover topics that include carbon capture, transport, storage, monitoring, regulation, and more.
View All PublicationsGet essential news and updates from the CCS sector and the IEAGHG by email.
Whatever you would like to know, our dedicated team of experts is here to help you. Just drop us an email and we will get back to you as soon as we can.
Contact Us Now