This website will offer limited functionality in this browser. We only support the recent versions of major browsers like Chrome, Firefox, Safari, and Edge.

Technology Collaboration Programme by IEA

Reduction of Residential Carbon Dioxide Emissions through the Use of small Cogeneration Fuel Cell Systems

Technical Report

1 November 2008

Capture

K U Birnbaum, J Linssen, P Leifeld

Citation: IEAGHG, "Reduction of Residential Carbon Dioxide Emissions through the Use of small Cogeneration Fuel Cell Systems", 2008-11, November 2008.

Download The Full Publication Now

Publication Overview

The study, comprising a literature review and desk-based assessment, aimed to produce a ‘high level’ overview of potential impacts on groundwater resources from storage operations, concentrating on DSF storage across a range of typical regional settings. The study also highlighted the current state of knowledge and/or gaps, recommending further research priorities where appropriate.

Publication Summary

Areas of geographical overlap between potential DSF CO₂ storage and overlying fresh water aquifers have been identified by combining available datasets to map the global and regional juxtaposition of groundwater resources and potential CO₂ storage sites. A classification scheme has been developed for the various geological settings in which overlap may occur. This was then tested for Europe where groundwater resources and potential CO₂ storage sites are relatively well documented and understood. In central Europe, potential storage areas coincide with areas of large, uniform potable aquifers and this could lead to potential conflicts in instances where potable aquifers extend to considerable depth, or low permeability caprock layers are scarce. In southern Europe, more complex aquifer systems (e.g. limestone karst) tend to coincide with potential storage resources. In North America it is the reversed situation, with the majority of geographical overlap occurring between complex aquifer systems and DSF and in Australia, there is overlap with deep freshwater aquifers. The situation in Australia is interesting to note as deep freshwater may coincide with potential DSF.

Two approaches have been used to address potential impact mechanisms of CO₂ storage projects on the hydrodynamics and chemistry of shallow groundwater. The first approach classifies and synthesises observations of water quality changes obtained in natural or industrial analogues, and in laboratory experiments. The second approach reviews hydrodynamic and geochemical models, including coupled multiphase flow and reactive transport, with the aim of linking leakage scenarios to possible impacts on groundwater resources

The findings of the study emphasise the current state-of-the-art regarding potential groundwater resource impacts to be based largely on theoretical considerations. Selection of appropriately characterised and risked storage sites should negate concerns over potential impacts on groundwater resources. Nevertheless, further research is required to better characterise potential leakage mechanisms and impacts, to inform the risk assessments required by regulators.

Possible mitigation options to stop or control CO₂ leakage have been discussed. In particular, the effect of CO₂ pressure in the host DSF and potential effects on shallow fresh water aquifers have been examined. In the literature, such options are mainly addressed through modelling approaches. Techniques for proper and effective mitigation of the impact of stored CO₂ on fresh water resources have been identified. These include: interception and extraction of CO₂ from the plume or brine from the storage reservoir; increase in pressure in formations above the leak; isolation or shut-off of leaks in accessible locations; creation of hydraulic barriers within the reservoir; and treatment of contamination caused by leakage, either in-situ or by ‘pump and treat’ technologies. Increased monitoring and investigation can also be regarded as an effective mitigation option in some instances.

Formulation of a credible mitigation strategy may form an important element of regulatory requirements for commercial scale storage sites. Also to be noted is that there is currently limited practical experience of CO₂ storage on the industrial scale and knowledge of managing potential impacts is largely theoretical based on modelling studies.

Download Publication

Access the complete publication in PDF format.

Download Now

Related Publications

View similar publications.

View All Publications
Technical Report

Power CCS: Potential for cost reductions and improvements

  • 5 August 2024
  • Capture
  • Costs of CCUS

CCS, in the context of power CCS technologies, will be an essential component of the portfolio of technologies required to reach net-zero emissions in the power sector. This study explores the potential to reduce the cost and accelerate the uptake of power CCS technologies.

Technical Review

7th Post-Combustion Capture Conference Summary

  • 1 April 2024
  • Capture
  • Event Proceedings

The 7th edition of the Post Combustion Capture Conference (PCCC-7) was held on the 25?28 September 2023 and was jointly hosted by the IEAGHG, U.S. Department of Energy (DOE) and the National Energy Technology Laboratory (NETL) and sponsored by Worley, Shell, and Mitsubishi Heavy Industries. (MHI).

Technical Report

Clean steel an environmental and technoeconomic outlook of a disruptive technology

  • 1 March 2024
  • Capture
  • Costs of CCUS

This study primarily presents a comparative analysis of steelmaking pathways to cost-effectively decarbonise a steel mill, taking a life-cycle perspective on associated environmental impacts. The roll-out of clean steel technologies is envisioned to have a significant implication for support infrastructure. Therefore, a secondary objective of the study is to gain insights into the primary energy and infrastructure implications associated with large-scale deployment of different steel decarbonisation pathways. Clean steel production will likely be more expensive than steel produced today; this poses additional economic strains on steel producers and consumers. Consequently, a third objective is to estimate the price premium that clean steel could command in existing and future markets. Further, this study formulates recommendations for key stakeholders to support the sector and outlines recommendations for further work.

Technical Report

Techno-Economic Assessment of Small-Scale Carbon Capture for Industrial and Power Systems

  • 1 March 2024
  • Capture
  • Costs of CCUS

This study, undertaken on behalf of IEAGHG by Element Energy (now a part of ERM), explores the role of CCS in decarbonising small-scale industry and power generation applications. While relatively under investigated compared to their larger scale counterparts, reaching net zero will be dependent on successfully addressing the emissions from small-scale facilities. The findings from the study will be of interest to the broader energy community but, in particular, should benefit project developers, the finance community and policymakers.

Technical Review

9th HTSLCN Meeting Report

  • 21 September 2023
  • Capture
  • Event Proceedings

The 9th High Temperature Solid Looping Cycles Network (HTSLCN) Meeting took place from 14th to 15th March 2023 at Palazzo Farnese in Piacenza, Italy, hosted by the CLEANKER consortium. 82 attendees enjoyed a two-day programme with a total of 28 presentations, the official closure of the CLEANKER project with a visit to the pilot plant, a relaxing dinner and a guided tour in the museum of Palazzo Farnese about the millennial history of the city of Piacenza and its territory, from the preRoman age to the XX century.

Technical Report

Start-up and Shutdown Protocol for Natural Gas-fired Power Stations with CO₂ Capture

  • 1 August 2022
  • Capture

In modern power grids, a power plant with CO₂ capture will be required to operate as a low-carbon, flexible, dispatchable power generator. A recent IEAGHG study showed it is possible to achieve net-zero CO₂ emissions from coal-fired and gas-fired power generation by employing higher capture rates and, in the case of coal-fired generation, by employing a mix of capture rates and biomass.

Technical Report

Blue Hydrogen: Beyond the Plant Gate

  • 1 August 2022
  • Capture
  • Costs of CCUS

The primary objective of this study is to review the comparative analysis of blue hydrogen production (that is hydrogen derived from fossil fuels and associated CCS) technologies from oil and oil-based feedstocks as well as the supply chain implication. Further, this study includes techno-economic and life cycle assessments of different technology production configurations in regions that have access to oil resources and potential for the deployment of CCS infrastructure at scale.

Technical Report

Defining the Value of Carbon Capture, Utilisation and Storage for a Low-Carbon Future

  • 1 August 2022
  • Capture
  • Utilisation

A key objective of the study was to explore the concept of ‘value’, when applied to a technology deployed in a low-carbon energy system. CCUS is an available mitigation option to support energy transitions and has been highlighted by global IAMs as a necessary technology to limit anthropogenic warming to well below 2°C. Despite this, there continues to be dissent among academics, business leaders and policymakers regarding the role CCUS can or should play in a low-carbon future. This opposition appears to stem not only from a narrow and incomplete focus on cost, and the perception that CCUS is a high-cost mitigation option under all circumstances, but also a failure to recognise the value of CCUS from other perspectives, such as human, social and environmental, to support the energy transition to net zero. As a result, a wider, deeper, and multi-disciplinary review of the ‘value’ of CCUS is explored. Recent literature spanning sector-specific techno-economic models, global and regional IAMs, and social studies to explore the diverse value of CCUS is reviewed. Results from Princeton University’s Net-Zero America study are summarised, where five alternate modelled pathways to net-zero emissions in the United States provided an exceptional level of sectoral, temporal and spatial granularity to highlight the value of CCUS in these pathways. Finally, a semi-quantitative, 2×2 decision framework was introduced to help policymakers screen the relative competitiveness of CCUS as a mitigation option across multiple domains. This framework was applied across a number of case studies, including the United States, the UK, Indonesia, Australia and Japan, to highlight under what circumstances CCUS might prove to be a valuable mitigation option to help these jurisdictions achieve time-bound mitigation goals.

Technical Report

Low-Carbon Hydrogen from Natural Gas: Global Roadmap

  • 1 August 2022
  • Capture
  • Costs of CCUS

The primary objective of this study is to conduct a techno-economic and environmental assessment of the production of natural gas-based hydrogen with accompanying carbon capture and storage (CCS) technology. Further, the purpose of this study is to enrich knowledge and compare the deployment of steam methane reforming (SMR), electrified SMR (E-SMR), autothermal reforming (ATR), and partial oxidation (POX) with CCS in the Netherlands. The findings of this study will be of interest to policy makers, industrial emitters, as well as technology developers.

Our most recent publications

Our authoritative, peer-reviewed publications cover topics that include carbon capture, transport, storage, monitoring, regulation, and more.

View All Publications
Technical Review

Insurance Coverage for CO₂ Storage Projects

  • 16 August 2024
  • Industry Insights
  • Storage

This report is a focused review of recent developments regarding insurance coverage for carbon dioxide (CO₂) geological storage projects. It seeks to address the following: what companies are offering or planning to offer insurance to CO₂ storage projects, what is the scope and duration of the coverage offered, and does coverage extend to the transportation of CO₂ to the project site? This work and report was prepared by Franz Hiebert.

Technical Review

CO₂ Storage Site Catalogue

  • 8 August 2024
  • Storage

This Technical Review provides an overview of 22 CO₂ storage sites from around the world. These include CO₂-EOR, commercial scale storage sites and a number of pilot and demonstration storage sites in both depleted hydrocarbon reservoirs and saline reservoirs. Its primary aim is to provide a convenient source of collated information with a specific focus on technical information that are in the public domain.

Technical Report

Power CCS: Potential for cost reductions and improvements

  • 5 August 2024
  • Capture
  • Costs of CCUS

CCS, in the context of power CCS technologies, will be an essential component of the portfolio of technologies required to reach net-zero emissions in the power sector. This study explores the potential to reduce the cost and accelerate the uptake of power CCS technologies.

Technical Review

7th Post-Combustion Capture Conference Summary

  • 1 April 2024
  • Capture
  • Event Proceedings

The 7th edition of the Post Combustion Capture Conference (PCCC-7) was held on the 25?28 September 2023 and was jointly hosted by the IEAGHG, U.S. Department of Energy (DOE) and the National Energy Technology Laboratory (NETL) and sponsored by Worley, Shell, and Mitsubishi Heavy Industries. (MHI).

Get the latest CCS news and insights

Get essential news and updates from the CCS sector and the IEAGHG by email.

Can’t find what you are looking for?

Whatever you would like to know, our dedicated team of experts is here to help you. Just drop us an email and we will get back to you as soon as we can.

Contact Us Now