This website will offer limited functionality in this browser. We only support the recent versions of major browsers like Chrome, Firefox, Safari, and Edge.

Technology Collaboration Programme by IEA

What Have We Learned from IEAGHG Storage Activities

IEAGHG

Citation: IEAGHG, "What Have We Learned from IEAGHG Storage Activities", 2009-TR1, February 2009.

Download The Full Publication Now

Publication Overview

This report summarises key learning points on CO2 geological storage from Operating Phase 5 of the IEA Greenhouse Gas R&D Programme (IEA GHG), which commenced in 2005 and effectively coincided with the publication of the IPCC Special Report on Carbon Dioxide Capture and Storage (IPCC SRCCS). IEA GHG activities revolve mainly around contracted studies and organisation of the international research networks. IEA GHG studies are chosen by programme members and sponsors from a wide list of proposals, ensuring those selected are focussed on topical technical issues. Study reports issued from 2005 onwards have contributed significant knowledge to major storage topics, including: regional capacity estimation; economics; environmental impact and risk assessment; well integrity and remediation of seepage; and development issues for deep saline formations.

Publication Summary

Studies have highlighted the need for further research on environmental impact assessment in the context of CO2 geological storage. Although there is an existing knowledge base on the effects of CO2 on ecosystems, a number of gaps in knowledge have been highlighted. Regulatory and industry attitudes to risk assessment for CO2 geological storage were examined in a 2007 questionnaire-based study. The study found no major discrepancies between attitudes of the two groups to risk assessment, which will provide an essential framework for the regulation of storage. Network discussions have recognised performance and impact assessments as twin components of risk assessment, which forms part of a wider risk management process that incorporates monitoring and mitigation. These discussions have also highlighted the fact that current understanding of performance assessment and environmental impacts renders quantitative risk assessment as problematic.

Download Publication

Access the complete publication in PDF format.

Download Now

Related Publications

View similar publications.

View All Publications
Technical Report

Geological Storage of CO2: Seal Integrity Review

  • 10 September 2024
  • Storage

This comprehensive seal integrity review, undertaken by CO2CRC on behalf of IEAGHG, provides a detailed, updated exploration of the critical aspects of seal potential in the context of the geological storage of CO2.

Technical Review

Insurance Coverage for CO2 Storage Projects

  • 16 August 2024
  • Industry Insights
  • Storage

This report is a focused review of recent developments regarding insurance coverage for carbon dioxide (CO2) geological storage projects. It seeks to address the following: what companies are offering or planning to offer insurance to CO2 storage projects, what is the scope and duration of the coverage offered, and does coverage extend to the transportation of CO2 to the project site? This work and report was prepared by Franz Hiebert.

Technical Review

CO2 Storage Site Catalogue

  • 8 August 2024
  • Storage

This Technical Review provides an overview of 22 CO2 storage sites from around the world. These include CO2-EOR, commercial scale storage sites and a number of pilot and demonstration storage sites in both depleted hydrocarbon reservoirs and saline reservoirs. Its primary aim is to provide a convenient source of collated information with a specific focus on technical information that are in the public domain.

Technical Report

The Role of Indices in Assessing the Maturity of CCUS Technologies and their Readiness for Deployment

  • 1 February 2024
  • Industry Insights

This study was undertaken on behalf of IEAGHG by Foresight Transitions Ltd. While a technology may be technically mature, it has become increasingly clear that the technology may not necessarily be considered commercially ‘bankable’ by investors. In this study, the potential for an index or indices to provide that confidence was explored. The findings from the study will be of interest to the broader energy community but, in particular, should benefit technology developers, CCUS end users, investors and policymakers.

Technical Report

Methologies and Technologies for Mitigation

  • 1 December 2023
  • Industry Insights

The driver behind this study is to develop a report built on the on the previous IEAGHG report on methods of leakage mitigation (2007/11). The proposed study should focus on current mitigation and remediation methods that may be applied or considered in site specific conditions in the event of unpredicted CO2 migration. Each geological storage site will have an adaptive site specific monitoring plan, based on a risk assessment. Detection of a significant irregularity may involve supplementing the monitoring program, in order to detect a possible leak and if necessary engaging mitigation measures.

Technical Review

Monitoring Network Meeting Report

  • 1 December 2023
  • Event Proceedings
  • Storage

The IEAGHG Monitoring Network aims to assess new technologies and techniques in the monitoring of CO2 storage, determine the limitations, accuracy and applicability of monitoring techniques, disseminate information from research and pilot storage projects around the world, develop extensive monitoring guidelines for the different sub-categories of geological storage; oil and gas fields, unmineable coal seams, and saline aquifers covering the differing conditions and reservoir properties encountered globally as well as to engage with relevant regulatory bodies.

Technical Review

6th International Workshop on Offshore Geologic CO2 Storage

  • 1 December 2023
  • Event Proceedings
  • Storage

The 6th International Workshop on Offshore Geologic CO2 Storage was held in Aberdeen on 13-14 September. Organised with the University of Texas and hosted by the University of Aberdeen. The loca on was very appropriate as we were co-hosted and sponsored by Storegga who leads the Acorn project nearby in Scotland. This project had been recently announced by the UK government as a Track 2 Cluster project. This 6th workshop had 190 delegates (60 in-person and 130 virtual) from 35 countries, with a good mix of industry, researchers and regulators.

Technical Report

Components of CCS Infrastructure – Interim CO2 Holding Options

  • 27 November 2023
  • Storage
  • Transport

This work, undertaken on behalf of IEAGHG by TNO and SINTEF, provides an overview of temporary / interim CO2 storage, or ‘holding’, options (also called buffers) and investigates the role of buffer storage and its potential to create flexible and robust carbon capture and storage (CCS) chains. The report looks at current and emerging buffer technologies, conducts simulations to demonstrate the temporary storage required for given flow-rate scenarios and discusses the impact of buffer capacity on transport costs. In the report, the storage requested in the chain for normal operation is presented as " temporary storage" and storage to give buffer capacity is presented as " buffer storage". This report has focussed on buffering at the emitter site. The results of this study will benefit CO2 storage site project developers, operators, financiers and regulators.

Technical Report

Classification of Total Storage Resources and Storage Coefficients

  • 1 November 2023
  • Storage

The CO2 Storage Resources Management System (SRMS) is a classification scheme to quantify, classify and categorise CO2 storage resources. It comprises ‘total storage resources’, which are understood as maximum (theoretical) storage quantities that could ever be accommodated in the subsurface. Comprising maximum mobile CO2 in structural/stratigraphic traps, maximum residually trapped CO2 in other parts of the formation, and maximum dissolution potential in remaining formation water. ‘Storable quantities’ are understood as accessible from one or several current or future projects. It is the sum of capacity, contingent and prospective resources. The concept of ‘storage coefficient’ ‘E’ is the ratio of the subsurface volume of CO2 storable quantities to either the total storage resources or the pore volume. The calculation is arguably complicated as E is impacted by lithological heterogeneity, trapping structures, boundary conditions, injection rates, well spacing, fluid properties etc. Due to its complexity, there is much controversy on how to estimate E, with some arguing it should not be used at all and that reservoir simulation is a better path. However, estimates for E are used in most regional mapping studies. This study explores storage resource classification schemes and their evolution in understanding, the calculation of storage resources and the storage co-efficient. This is explored in terms of calculating E for CO2 storage sites, through flow modelling and analytical solutions.

Our most recent publications

Our authoritative, peer-reviewed publications cover topics that include carbon capture, transport, storage, monitoring, regulation, and more.

View All Publications
Technical Report

Geological Storage of CO2: Seal Integrity Review

  • 10 September 2024
  • Storage

This comprehensive seal integrity review, undertaken by CO2CRC on behalf of IEAGHG, provides a detailed, updated exploration of the critical aspects of seal potential in the context of the geological storage of CO2.

Technical Review

Insurance Coverage for CO2 Storage Projects

  • 16 August 2024
  • Industry Insights
  • Storage

This report is a focused review of recent developments regarding insurance coverage for carbon dioxide (CO2) geological storage projects. It seeks to address the following: what companies are offering or planning to offer insurance to CO2 storage projects, what is the scope and duration of the coverage offered, and does coverage extend to the transportation of CO2 to the project site? This work and report was prepared by Franz Hiebert.

Technical Review

CO2 Storage Site Catalogue

  • 8 August 2024
  • Storage

This Technical Review provides an overview of 22 CO2 storage sites from around the world. These include CO2-EOR, commercial scale storage sites and a number of pilot and demonstration storage sites in both depleted hydrocarbon reservoirs and saline reservoirs. Its primary aim is to provide a convenient source of collated information with a specific focus on technical information that are in the public domain.

Technical Report

Power CCS: Potential for cost reductions and improvements

  • 5 August 2024
  • Capture
  • Costs of CCUS

CCS, in the context of power CCS technologies, will be an essential component of the portfolio of technologies required to reach net-zero emissions in the power sector. This study explores the potential to reduce the cost and accelerate the uptake of power CCS technologies.

Technical Review

7th Post-Combustion Capture Conference Summary

  • 1 April 2024
  • Capture
  • Event Proceedings

The 7th edition of the Post Combustion Capture Conference (PCCC-7) was held on the 25?28 September 2023 and was jointly hosted by the IEAGHG, U.S. Department of Energy (DOE) and the National Energy Technology Laboratory (NETL) and sponsored by Worley, Shell, and Mitsubishi Heavy Industries. (MHI).

Technical Report

Techno-Economic Assessment of Small-Scale Carbon Capture for Industrial and Power Systems

  • 1 March 2024
  • Capture
  • Costs of CCUS

This study, undertaken on behalf of IEAGHG by Element Energy (now a part of ERM), explores the role of CCS in decarbonising small-scale industry and power generation applications. While relatively under investigated compared to their larger scale counterparts, reaching net zero will be dependent on successfully addressing the emissions from small-scale facilities. The findings from the study will be of interest to the broader energy community but, in particular, should benefit project developers, the finance community and policymakers.

Technical Report

Clean steel an environmental and technoeconomic outlook of a disruptive technology

  • 1 March 2024
  • Capture
  • Costs of CCUS

This study primarily presents a comparative analysis of steelmaking pathways to cost-effectively decarbonise a steel mill, taking a life-cycle perspective on associated environmental impacts. The roll-out of clean steel technologies is envisioned to have a significant implication for support infrastructure. Therefore, a secondary objective of the study is to gain insights into the primary energy and infrastructure implications associated with large-scale deployment of different steel decarbonisation pathways. Clean steel production will likely be more expensive than steel produced today; this poses additional economic strains on steel producers and consumers. Consequently, a third objective is to estimate the price premium that clean steel could command in existing and future markets. Further, this study formulates recommendations for key stakeholders to support the sector and outlines recommendations for further work.

Technical Report

The Role of Indices in Assessing the Maturity of CCUS Technologies and their Readiness for Deployment

  • 1 February 2024
  • Industry Insights

This study was undertaken on behalf of IEAGHG by Foresight Transitions Ltd. While a technology may be technically mature, it has become increasingly clear that the technology may not necessarily be considered commercially ‘bankable’ by investors. In this study, the potential for an index or indices to provide that confidence was explored. The findings from the study will be of interest to the broader energy community but, in particular, should benefit technology developers, CCUS end users, investors and policymakers.

Get the latest CCS news and insights

Get essential news and updates from the CCS sector and the IEAGHG by email.

Can’t find what you are looking for?

Whatever you would like to know, our dedicated team of experts is here to help you. Just drop us an email and we will get back to you as soon as we can.

Contact Us Now