Measurement, reporting and verification and accounting for carbon dioxide removal in the context of both project-based approaches and national greenhouse gas inventories
- 15 October 2024
- Industry Insights
- Policy & Regulation
This website will offer limited functionality in this browser. We only support the recent versions of major browsers like Chrome, Firefox, Safari, and Edge.
Greg Cook, Paul Zakkour
Citation: IEAGHG, "CCS deployment", 2015-TR3, July 2015.
Meeting the long-term goal to limit global temperature rises to 2°C compared to pre-industrial levels requires large-scale deployment of low carbon technologies such as CCS. According to the most recent assessment of the Intergovernmental Panel on Climate Change (IPCC), without additional efforts to reduce emissions, global mean surface temperatures are likely to increase between 3.7 and 4.8oC by 2100 compared to pre-industrial levels. Scenarios that keep the atmospheric concentration of CO₂ to around 450 ppm by 2100 (66 per cent chance) are consistent with holding a rise in global temperatures to below 2°C – the long-term goal of the United Nations Framework Convention on Climate Change (UNFCCC). Such scenarios involve deep cuts in GHG emissions over the coming decades, requiring radical changes to energy systems and a step-change in the uptake of low carbon technologies.
Meeting the long-term goal to limit global temperature rises to 2°C compared to pre-industrial levels requires large-scale deployment of low carbon technologies including CCS. This report finds that CCS presents an opportunity for many countries worldwide to reduce GHG emissions. The drivers for undertaking CCS as part of emissions mitigation efforts are diverse and vary according to the different national circumstances of countries and regions. They include:
Availability of in-country capacity and technology capabilities CCS projects are technically feasible at scale and have costs that are comparable with other mitigation technologies. A portfolio of technologies is available depending on the relevant emission sources and availability of suitable geological storage sites. Furthermore, assessments made to date indicate a large potential for CCS, including sufficient storage for several decades of emissions, in many countries worldwide. However, progress with deployment of the technology is currently falling far behind the levels envisaged by low carbon scenarios. This report finds a broad spectrum of barriers to the deployment of CCS: some are technical, some are economic, some are institutional and regulatory, and some concern the cost effectiveness of CCS compared to alternative mitigation options.
Our authoritative, peer-reviewed publications cover topics that include carbon capture, transport, storage, monitoring, regulation, and more.
View All PublicationsGet essential news and updates from the CCS sector and the IEAGHG by email.
Whatever you would like to know, our dedicated team of experts is here to help you. Just drop us an email and we will get back to you as soon as we can.
Contact Us Now