This website will offer limited functionality in this browser. We only support the recent versions of major browsers like Chrome, Firefox, Safari, and Edge.

Technology Collaboration Programme by IEA

Operational Flexibility of CO2 Transport and Storage

James Craig

Citation: IEAGHG, "Operational Flexibility of CO2 Transport and Storage", 2016-04, March 2016.

Download The Full Publication Now

Publication Overview

This study has reviewed different transport and storage scenarios to reflect the range of full-scale commercial operations. In addition to a wide ranging literature review a survey of industrial, utility, pipeline and CO2-EOR operators was also conducted to obtain their insights of CO2 transport and storage. Owing to the sensitivity of these commercial operations it has not been possible to attribute background information to either individuals or their companies. Anonymity has not prevented the inclusion of real world data on exhaust gas composition from different sources including power generation (coal and natural gas), oil refining, gas processing, cement, hydrogen production, and ethanol production. It also includes background information on actual CO2 pipeline operation, including network hubs, and CO2 CO2-EOR experience in the United States. Experience from different industrial scale injection projects such as Sleipner, Snøhvit and In Salah, has been included. The study has investigated how flexible operation affects CO2 storage and the measures adopted to accommodate intermittent supply. There are a series of prioritized recommendations based on the gaps in knowledge.

Publication Summary

  • Large point sources of CO2 can deliver relatively pure 99.7% CO2 after capture and dehydration. However, it is important to recognise that many large-scale industrial processes that generate CO2 emissions are cyclical and intermittent, therefore, to ensure a consistent and reliable CO2 supply integrated pipeline networks will be essential.
  • Experience from the United States clearly demonstrates that CO2 with a high level of purity can be effectively and safely delivered using integrated pipeline networks.
  • Networks can be a useful means to control flow in a pipeline and can also act as a buffer by supplying CO2 from several sources to a number of different sinks. Multiple sources also mean that there is less reliance on a single source and intermittent supply from different sources can be accommodated. CO2 can also be temporarily compressed or ‘packed’ into pipelines as a short term measure.
  • This study has shown that most North American CO2 pipelines are overdesigned for their current application. They are designed for higher flow rates and operating pressures through the use of thicker walls and larger diameters. Future pipeline networks can take advantage of this experience if there is an intention for increased capacity in the future.
  • Impurities particularly H2O and O2, can have negative impacts on pipelines including fracture propagation, corrosion, non-metallic component deterioration and the formation of hydrates and clathrates. The density and viscosity of fluids can also be affected. Non-condensables like N2, O2, Ar, CH4 and H2 should be separately limited to <4% because their presence increases the amount of compression work. Compression and transport of CO2 for CO2-EOR use in the United States has shown that impurities are not likely to cause transport problems provided CO2 stream composition standards are maintained and pressures are kept significantly over the critical point (≥10.3 MPa).
  • The most significant effect on transport and injection of CO2 is the water content. The Kinder Morgan specification for pipeline transport of CO2 is a 600 ppm by weight for H2O and 10 ppm by weight for O2. Hydrate formation can lead to the most dramatic interruption to flow but the condition is generally preventable using multistage compression and knock out systems plus the inclusion of chemical dryers such as monoethylene glycol.
  • Intermittent flow can have an impact on wellbore integrity, fatigue and corrosion. Changes in gas pressure can result in deleterious phase behaviour including segregation of the component gases leading to corrosive effects. Maintaining sufficient pressure is possible onshore with compressor plants but this option is not possible offshore. Lengthy offshore pipelines may need to be larger in diameter than their onshore equivalents so that pipeline pressure can be maintained.
  • CO2 storage in deep saline formations can be managed by using multiple wells and water pumping to control and releave excess pressure, and control plume geometry.
  • CO2-EOR relies on controlling pressure and flow rate conditions to optimise oil recovery. Restricted injection caused by wells being shut in can result in deleterious changes in reservoir pressure and oil miscibility. Under these conditions the precipitation of minerals or asphaltenes (high molecular weight compounds such as bitumen) or changes in formation fluid saturation properties can occur. Reservoir permeability can be reduced as a result. This study has found that experienced operators can plan for intermittency in both the supply of CO2 and in CO2 EOR operations.

Download Publication

Access the complete publication in PDF format.

Download Now

Related Publications

View similar publications.

View All Publications
Technical Report

Geological Storage of CO2: Seal Integrity Review

  • 10 September 2024
  • Storage

This comprehensive seal integrity review, undertaken by CO2CRC on behalf of IEAGHG, provides a detailed, updated exploration of the critical aspects of seal potential in the context of the geological storage of CO2.

Technical Review

Insurance Coverage for CO2 Storage Projects

  • 16 August 2024
  • Industry Insights
  • Storage

This report is a focused review of recent developments regarding insurance coverage for carbon dioxide (CO2) geological storage projects. It seeks to address the following: what companies are offering or planning to offer insurance to CO2 storage projects, what is the scope and duration of the coverage offered, and does coverage extend to the transportation of CO2 to the project site? This work and report was prepared by Franz Hiebert.

Technical Review

CO2 Storage Site Catalogue

  • 8 August 2024
  • Storage

This Technical Review provides an overview of 22 CO2 storage sites from around the world. These include CO2-EOR, commercial scale storage sites and a number of pilot and demonstration storage sites in both depleted hydrocarbon reservoirs and saline reservoirs. Its primary aim is to provide a convenient source of collated information with a specific focus on technical information that are in the public domain.

Technical Review

6th International Workshop on Offshore Geologic CO2 Storage

  • 1 December 2023
  • Event Proceedings
  • Storage

The 6th International Workshop on Offshore Geologic CO2 Storage was held in Aberdeen on 13-14 September. Organised with the University of Texas and hosted by the University of Aberdeen. The loca on was very appropriate as we were co-hosted and sponsored by Storegga who leads the Acorn project nearby in Scotland. This project had been recently announced by the UK government as a Track 2 Cluster project. This 6th workshop had 190 delegates (60 in-person and 130 virtual) from 35 countries, with a good mix of industry, researchers and regulators.

Technical Review

Monitoring Network Meeting Report

  • 1 December 2023
  • Event Proceedings
  • Storage

The IEAGHG Monitoring Network aims to assess new technologies and techniques in the monitoring of CO2 storage, determine the limitations, accuracy and applicability of monitoring techniques, disseminate information from research and pilot storage projects around the world, develop extensive monitoring guidelines for the different sub-categories of geological storage; oil and gas fields, unmineable coal seams, and saline aquifers covering the differing conditions and reservoir properties encountered globally as well as to engage with relevant regulatory bodies.

Technical Report

Components of CCS Infrastructure – Interim CO2 Holding Options

  • 27 November 2023
  • Storage
  • Transport

This work, undertaken on behalf of IEAGHG by TNO and SINTEF, provides an overview of temporary / interim CO2 storage, or ‘holding’, options (also called buffers) and investigates the role of buffer storage and its potential to create flexible and robust carbon capture and storage (CCS) chains. The report looks at current and emerging buffer technologies, conducts simulations to demonstrate the temporary storage required for given flow-rate scenarios and discusses the impact of buffer capacity on transport costs. In the report, the storage requested in the chain for normal operation is presented as " temporary storage" and storage to give buffer capacity is presented as " buffer storage". This report has focussed on buffering at the emitter site. The results of this study will benefit CO2 storage site project developers, operators, financiers and regulators.

Technical Report

Classification of Total Storage Resources and Storage Coefficients

  • 1 November 2023
  • Storage

The CO2 Storage Resources Management System (SRMS) is a classification scheme to quantify, classify and categorise CO2 storage resources. It comprises ‘total storage resources’, which are understood as maximum (theoretical) storage quantities that could ever be accommodated in the subsurface. Comprising maximum mobile CO2 in structural/stratigraphic traps, maximum residually trapped CO2 in other parts of the formation, and maximum dissolution potential in remaining formation water. ‘Storable quantities’ are understood as accessible from one or several current or future projects. It is the sum of capacity, contingent and prospective resources. The concept of ‘storage coefficient’ ‘E’ is the ratio of the subsurface volume of CO2 storable quantities to either the total storage resources or the pore volume. The calculation is arguably complicated as E is impacted by lithological heterogeneity, trapping structures, boundary conditions, injection rates, well spacing, fluid properties etc. Due to its complexity, there is much controversy on how to estimate E, with some arguing it should not be used at all and that reservoir simulation is a better path. However, estimates for E are used in most regional mapping studies. This study explores storage resource classification schemes and their evolution in understanding, the calculation of storage resources and the storage co-efficient. This is explored in terms of calculating E for CO2 storage sites, through flow modelling and analytical solutions.

Technical Review

Risk Management Network Meeting Report

  • 29 September 2023
  • Event Proceedings
  • Storage

The Risk Management Network meeting was held as an in-person event with a particular focus on the risk of wells (particularly legacy wells) in a CCS project, looking at the topic from basin scale through to detailed characterisation of well materials and monitoring. Attended by over 75 delegates from 15 countries, the two day meeting was held at Heriot-Watt University in Edinburgh, UK. It was kicked off by a welcome reception in the Lyell Centre (home to both BGS and the Institute for GeoEnergy Engineering) and was followed by a field excursion to explore the geological history of Arthur’s Seat in Edinburgh and a tour of a very new distillery located in an old train station within stone’s throw of Holyrood Park.

Our most recent publications

Our authoritative, peer-reviewed publications cover topics that include carbon capture, transport, storage, monitoring, regulation, and more.

View All Publications
Technical Report

Geological Storage of CO2: Seal Integrity Review

  • 10 September 2024
  • Storage

This comprehensive seal integrity review, undertaken by CO2CRC on behalf of IEAGHG, provides a detailed, updated exploration of the critical aspects of seal potential in the context of the geological storage of CO2.

Technical Review

Insurance Coverage for CO2 Storage Projects

  • 16 August 2024
  • Industry Insights
  • Storage

This report is a focused review of recent developments regarding insurance coverage for carbon dioxide (CO2) geological storage projects. It seeks to address the following: what companies are offering or planning to offer insurance to CO2 storage projects, what is the scope and duration of the coverage offered, and does coverage extend to the transportation of CO2 to the project site? This work and report was prepared by Franz Hiebert.

Technical Review

CO2 Storage Site Catalogue

  • 8 August 2024
  • Storage

This Technical Review provides an overview of 22 CO2 storage sites from around the world. These include CO2-EOR, commercial scale storage sites and a number of pilot and demonstration storage sites in both depleted hydrocarbon reservoirs and saline reservoirs. Its primary aim is to provide a convenient source of collated information with a specific focus on technical information that are in the public domain.

Technical Report

Power CCS: Potential for cost reductions and improvements

  • 5 August 2024
  • Capture
  • Costs of CCUS

CCS, in the context of power CCS technologies, will be an essential component of the portfolio of technologies required to reach net-zero emissions in the power sector. This study explores the potential to reduce the cost and accelerate the uptake of power CCS technologies.

Technical Review

7th Post-Combustion Capture Conference Summary

  • 1 April 2024
  • Capture
  • Event Proceedings

The 7th edition of the Post Combustion Capture Conference (PCCC-7) was held on the 25?28 September 2023 and was jointly hosted by the IEAGHG, U.S. Department of Energy (DOE) and the National Energy Technology Laboratory (NETL) and sponsored by Worley, Shell, and Mitsubishi Heavy Industries. (MHI).

Technical Report

Techno-Economic Assessment of Small-Scale Carbon Capture for Industrial and Power Systems

  • 1 March 2024
  • Capture
  • Costs of CCUS

This study, undertaken on behalf of IEAGHG by Element Energy (now a part of ERM), explores the role of CCS in decarbonising small-scale industry and power generation applications. While relatively under investigated compared to their larger scale counterparts, reaching net zero will be dependent on successfully addressing the emissions from small-scale facilities. The findings from the study will be of interest to the broader energy community but, in particular, should benefit project developers, the finance community and policymakers.

Technical Report

Clean steel an environmental and technoeconomic outlook of a disruptive technology

  • 1 March 2024
  • Capture
  • Costs of CCUS

This study primarily presents a comparative analysis of steelmaking pathways to cost-effectively decarbonise a steel mill, taking a life-cycle perspective on associated environmental impacts. The roll-out of clean steel technologies is envisioned to have a significant implication for support infrastructure. Therefore, a secondary objective of the study is to gain insights into the primary energy and infrastructure implications associated with large-scale deployment of different steel decarbonisation pathways. Clean steel production will likely be more expensive than steel produced today; this poses additional economic strains on steel producers and consumers. Consequently, a third objective is to estimate the price premium that clean steel could command in existing and future markets. Further, this study formulates recommendations for key stakeholders to support the sector and outlines recommendations for further work.

Technical Report

The Role of Indices in Assessing the Maturity of CCUS Technologies and their Readiness for Deployment

  • 1 February 2024
  • Industry Insights

This study was undertaken on behalf of IEAGHG by Foresight Transitions Ltd. While a technology may be technically mature, it has become increasingly clear that the technology may not necessarily be considered commercially ‘bankable’ by investors. In this study, the potential for an index or indices to provide that confidence was explored. The findings from the study will be of interest to the broader energy community but, in particular, should benefit technology developers, CCUS end users, investors and policymakers.

Get the latest CCS news and insights

Get essential news and updates from the CCS sector and the IEAGHG by email.

Can’t find what you are looking for?

Whatever you would like to know, our dedicated team of experts is here to help you. Just drop us an email and we will get back to you as soon as we can.

Contact Us Now