This website will offer limited functionality in this browser. We only support the recent versions of major browsers like Chrome, Firefox, Safari, and Edge.

Technology Collaboration Programme by IEA

Explore our Publications Library

Discover the latest advances carbon capture and storage research

Technical Report

Components of CCS Infrastructure - Interim CO₂ Holding Options

  • 27 November 2023
  • Storage
  • Transport

This work, undertaken on behalf of IEAGHG by TNO and SINTEF, provides an overview of temporary / interim CO₂ storage, or ‘holding’, options (also called buffers) and investigates the role of buffer storage and its potential to create flexible and robust carbon capture and storage (CCS) chains. The report looks at current and emerging buffer technologies, conducts simulations to demonstrate the temporary storage required for given flow-rate scenarios and discusses the impact of buffer capacity on transport costs. In the report, the storage requested in the chain for normal operation is presented as " temporary storage" and storage to give buffer capacity is presented as " buffer storage". This report has focussed on buffering at the emitter site. The results of this study will benefit CO₂ storage site project developers, operators, financiers and regulators.

Technical Report

Classification of Total Storage Resources and Storage Coefficients

  • 1 November 2023
  • Storage

The CO₂ Storage Resources Management System (SRMS) is a classification scheme to quantify, classify and categorise CO₂ storage resources. It comprises ‘total storage resources’, which are understood as maximum (theoretical) storage quantities that could ever be accommodated in the subsurface. Comprising maximum mobile CO₂ in structural/stratigraphic traps, maximum residually trapped CO₂ in other parts of the formation, and maximum dissolution potential in remaining formation water. ‘Storable quantities’ are understood as accessible from one or several current or future projects. It is the sum of capacity, contingent and prospective resources. The concept of ‘storage coefficient’ ‘E’ is the ratio of the subsurface volume of CO₂ storable quantities to either the total storage resources or the pore volume. The calculation is arguably complicated as E is impacted by lithological heterogeneity, trapping structures, boundary conditions, injection rates, well spacing, fluid properties etc. Due to its complexity, there is much controversy on how to estimate E, with some arguing it should not be used at all and that reservoir simulation is a better path. However, estimates for E are used in most regional mapping studies. This study explores storage resource classification schemes and their evolution in understanding, the calculation of storage resources and the storage co-efficient. This is explored in terms of calculating E for CO₂ storage sites, through flow modelling and analytical solutions.

Technical Report

Prospective Integration of Geothermal Energy with Carbon Capture and Storage

  • 23 August 2023
  • Storage
  • Utilisation

The aim of the study is to provide a dispassionate review and overview of scenarios where geothermal energy and CO₂ utilisation and storage technologies can be combined for mutual benefit and contribute to Net Zero targets. Sourced from a rich body of literature from global research institutes and some demonstration projects many of the concepts identified have been conceptualised over the past 20 years and are still in the early concept stage. These concepts have been categorised, described and evaluated using qualitative and quantitative methods. And a map based screening exercise useful for initial evaluation of areas suitable for combined synergies has been undertaken.

Technical Report

Integrating CCS in international cooperation and carbon markets under Article 6 of the Paris Agreement

  • 18 January 2023
  • Policy & Regulation

This work assesses the status of and outlooks for international cooperation under Article 6 of the Paris Agreement and considers how approaches could support the deployment of carbon capture and storage (CCS). It provides an up-to-date look at the Article 6 rules, the types of markets and mechanisms that could evolve, and the units that could be traded. It then considers how Article 6 could apply to CCS through linked emissions trading systems, crediting systems and alternative approaches.

Technical Report

Applying ISO Standards to Geologic Storage and EOR Projects

  • 1 September 2022
  • Policy & Regulation
  • Storage

The work aims to summarise and synthesise the two ISO Standards relevant to the geological storage of CO₂: – ISO 27914:2017 (‘Carbon dioxide capture, transportation and geological storage - Geological storage’) and ISO 27916:2019 (‘Carbon dioxide capture, transportation and geological storage - Carbon dioxide storage using enhanced oil recovery (CO₂-EOR)’) – to provide a high-level understanding of the content into an easily digestible format. By comparison with international regulatory frameworks, and providing case studies of how applicable the standards are to real CO₂ storage projects, the study provides a comprehensive overview and concludes on the usefulness of the documents in supporting the implementation of CCUS projects. For the purposes of this overview, the standards will hereafter be referred to as ISO 27914 and ISO 27916

Technical Report

Blue Hydrogen: Beyond the Plant Gate

  • 1 August 2022
  • Capture
  • Costs of CCUS

The primary objective of this study is to review the comparative analysis of blue hydrogen production (that is hydrogen derived from fossil fuels and associated CCS) technologies from oil and oil-based feedstocks as well as the supply chain implication. Further, this study includes techno-economic and life cycle assessments of different technology production configurations in regions that have access to oil resources and potential for the deployment of CCS infrastructure at scale.

Technical Report

Low-Carbon Hydrogen from Natural Gas: Global Roadmap

  • 1 August 2022
  • Capture
  • Costs of CCUS

The primary objective of this study is to conduct a techno-economic and environmental assessment of the production of natural gas-based hydrogen with accompanying carbon capture and storage (CCS) technology. Further, the purpose of this study is to enrich knowledge and compare the deployment of steam methane reforming (SMR), electrified SMR (E-SMR), autothermal reforming (ATR), and partial oxidation (POX) with CCS in the Netherlands. The findings of this study will be of interest to policy makers, industrial emitters, as well as technology developers.

Technical Report

Start-up and Shutdown Protocol for Natural Gas-fired Power Stations with CO₂ Capture

  • 1 August 2022
  • Capture

In modern power grids, a power plant with CO₂ capture will be required to operate as a low-carbon, flexible, dispatchable power generator. A recent IEAGHG study showed it is possible to achieve net-zero CO₂ emissions from coal-fired and gas-fired power generation by employing higher capture rates and, in the case of coal-fired generation, by employing a mix of capture rates and biomass.

Technical Report

Defining the Value of Carbon Capture, Utilisation and Storage for a Low-Carbon Future

  • 1 August 2022
  • Capture
  • Utilisation

A key objective of the study was to explore the concept of ‘value’, when applied to a technology deployed in a low-carbon energy system. CCUS is an available mitigation option to support energy transitions and has been highlighted by global IAMs as a necessary technology to limit anthropogenic warming to well below 2°C. Despite this, there continues to be dissent among academics, business leaders and policymakers regarding the role CCUS can or should play in a low-carbon future. This opposition appears to stem not only from a narrow and incomplete focus on cost, and the perception that CCUS is a high-cost mitigation option under all circumstances, but also a failure to recognise the value of CCUS from other perspectives, such as human, social and environmental, to support the energy transition to net zero. As a result, a wider, deeper, and multi-disciplinary review of the ‘value’ of CCUS is explored. Recent literature spanning sector-specific techno-economic models, global and regional IAMs, and social studies to explore the diverse value of CCUS is reviewed. Results from Princeton University’s Net-Zero America study are summarised, where five alternate modelled pathways to net-zero emissions in the United States provided an exceptional level of sectoral, temporal and spatial granularity to highlight the value of CCUS in these pathways. Finally, a semi-quantitative, 2x2 decision framework was introduced to help policymakers screen the relative competitiveness of CCUS as a mitigation option across multiple domains. This framework was applied across a number of case studies, including the United States, the UK, Indonesia, Australia and Japan, to highlight under what circumstances CCUS might prove to be a valuable mitigation option to help these jurisdictions achieve time-bound mitigation goals.

Technical Report

Mineral Carbonation using Mine Tailings - A Strategic Overview of Potential and Opportunities

  • 1 July 2022
  • Utilisation

The aim of this review is to evaluate the techno-economic viability of AMC, and the comparative maturity of the technology, based on publicly available information. This report is primarily concerned with magnesium-silicate rich mine tailings and ex situ processing to induce carbonation suitably reactive rock. Magnesium silicate rocks can potentially offer significant volumes of material for CO₂ capture compared with calcium-based materials

Technical Report

From Carbon Dioxide to Building Materials - Improving Process Efficiency

  • 1 March 2022
  • Utilisation

IEAGHG commissioned a study to investigate how captured CO₂ can be used in building materials. It also explored the processes that are used to capture this CO₂ and includes case studies where these processes are happening. The work has evaluated CO₂ utilisation in the context of cement and concrete production by looking into the effects of carbonation on material utilisation and the design of a potential carbonation plant. The market analysis and market pull of carbonated building products is also covered.

Explore our resources

Discover everything that IEAGHG has to offer, from the latest publications to exciting events.

Publications

Discover our expansive library of leading CCS research covering a wealth of topics. From DACS to BECCS and Carbon Markets to Carbon Capture.

Discover More

Events

We are committed to sharing the latest CCS knowledge worldwide. Learn how you can join our global conferences, expert networks, workshops and webinars.

Experience More

News & Insights

Get the latest IEAGHG news, discover our impact, and uncover essential analyses of global CCS developments.

Stay Updated

Discover membership

Access to restricted publications is just the beginning. IEAGHG membership has unlocked CCS potential for government and industry around the world. Discover what it can do for you.

Discover More

Get the latest CCS news and insights

Get essential news and updates from the CCS sector and the IEAGHG by email.

Can't find what you are looking for?

Whatever you would like to know, our dedicated team of experts is here to help you. Just drop us an email and we will get back to you as soon as we can.

Contact Us Now