This website will offer limited functionality in this browser. We only support the recent versions of major browsers like Chrome, Firefox, Safari, and Edge.

Technology Collaboration Programme by IEA

Explore our Publications Library

Discover the latest advances carbon capture and storage research

Technical Report

CO2 Utilisation: Hydrogenation Pathways

  • 1 November 2021
  • Costs of CCUS
  • Utilisation

The aim of this study is to assess the feasibility of select carbon capture and utilisation (CCU) routes based upon CO2 conversion through hydrogenation, in terms of their climate change mitigation potential. The results of this study will be of interest to organisations/individuals involved with climate-change scenario modelling, as well as RD&D financial sponsors. The commodities selected for investigation were methanol, formic acid, and middle distillate hydrocarbons (synthetic fuels: diesel, gasoline, jet fuel), with a focus on catalytic hydrogenation pathways. Results of CO2 emissions, costs and energy consumption for formic acid, however, will not be presented in detail in this Overview, as the analysis has shown that the abatement is limited to 2 MtCO2 due to the small market size. (Results for formic acid are available in the full report.)

Technical Report

Biorefineries with CCS

  • 1 March 2021
  • Capture
  • Costs of CCUS

The aim of this study is to provide a techno-economic assessment of biorefinery concepts with and without carbon capture and storage (CCS) as well as a comparative assessment of 1st generation and 2nd generation biorefineries. The results of this study will be of interest to developers of biorefinery and CCS projects and policy makers.

Technical Report

CCS and the Sustainable Development Goals

  • 15 December 2020
  • Policy & Regulation

The overall objective of this assessment was to improve the availability and accessibility of information regarding the relevance of CCS in contributing to the achievement of the Sustainable Development Goals. The primary objective was achieved through the completion of three key goals: <ol> <!-- wp:list-item --><!-- wp:list-item --><li>Collation of existing information on impacts of CCS on specific targets of the 17 SDGs, using the rating, scoring and information assessment as per IPCC’s SR1.5,</li><!-- /wp:list-item --><!-- /wp:list-item --> <!-- wp:list-item --><!-- wp:list-item --><li>Articulation of specific gaps in information, and</li><!-- /wp:list-item --><!-- /wp:list-item --> </ol> Proposal of a path forward by providing a prioritised lists of gap closures.There is a growing body of literature orientated towards converting climate action into policies directed towards implementation of SDGs. There is also a trend of material becoming available examining the interaction of technologies and sectors against SDGs. CCS remains a complex technological solution to climate change, and public understanding of the technology remains low. This study can help to substantiate the wider value of CCS, but it can also highlight points of attention/action on potentially negative interactions with specific SDGs.

Technical Report

CCS on Waste to Energy

  • 1 December 2020
  • Capture

It is estimated that, by 2050, 3.75 billion tons of waste will be produced annually and 11.1% of it will be incinerated (The World Bank). Globally, it is estimated that 1.76 billion tons1 of CO2 were generated from solid waste treatment and disposal in 2016, representing 5% of the total global CO2 emissions (The World Bank). In waste-to-energy (WtE) facilities, the waste incineration of 1 ton of municipal solid waste (MSW) is associated with the release of about 0.7-1.7 tons1 of CO2. (Zero Waste Europe, 2019). The CO2 content in the flue gas emitted from WtE facilities is approximately 6-12%, depending on the feedstock and treatment process (Zehenhoven R. and Kilpinen P). IEAGHG identified the need to explore the implementation of CCUS (Carbon Capture & Utilization/Storage) as a CO2 emissions mitigation pathway in the WtE sector under different regional scenarios. This report is divided into 5 sections: overview of WtE frameworks and WtE with CCS projects; review of regulations for WtE plants; overview of strategies to cut down CO2 emissions from WtE plants; review of challenges on the integration of CO2 capture systems on WtE plants; and assessment of the market potential of the WtE-CCU/CCS integration.

Technical Report

IEAGHG High Temperature Solid Looping Cycles Network – Combined meeting report

  • 16 October 2020
  • Capture
  • Event Proceedings

The 6th HTSLCN Meeting took place from 1st to 2nd September 2015 at the Department of Energy, Politecnico di Milano, in Italy. 72 attendees from 19 countries enjoyed a two-day programme with 45 presentations, site visits to research facilities at Politecnico di Milano and a stunning dinner at Lake Como. Two keynotes covered the progress made in calcium and chemical looping technologies respectively in the last decade. The technical sessions provided the latest advances in calcium and chemical looping pilot plant testing, solid carrier fundamentals, system modelling, process and heat integration, and sorption enhanced reforming technologies. Other topics were utilisation of biomass as a fuel, techno-economics of a large-scale packed bed reactor for chemical looping and the application of calcium looping in cement plants. The meeting formally closed with a discussion forum that summarised the main conclusions from the earlier presentations and the most burning issues for the future. The 7th HTSLCN Meeting will take place from 4th to 5th September 2017 at Swerea MEFOS in Luleå, Sweden.

Technical Report

Beyond LCOE: Value of technologies in different generation and grid scenarios

  • 29 September 2020
  • Capture
  • Costs of CCUS

Since its introduction, the levelised cost of electricity (LCOE) has become ubiquitous in the evaluation and comparison of power generation technologies. While it is a readily accessible metric, it focuses exclusively on the cost of electricity produced from an asset and neglects to address the provision of ancillary services that are vital for the reliable operation of an electricity grid. This simplification was entirely appropriate for the electricity system of the 20th century, dominated at it was by fossil fuels and nuclear technologies, but it falls well short as a metric to compare technologies in a system to provide net-zero emissions by the mid-21st century. The objective of this study was to evaluate the various concepts that have been proposed as alternatives to LCOE and to explore the potential for a concept that balances completeness and ease of use. As an alternative to LCOE, this study proposes the modified screening curve concept, which shows that, while intermittent renewables have significant value by providing energy/fuel savings, a low-carbon dispatchable technology such as CCUS has critical value by supplying the flexible capacity to deliver security of supply.

Technical Report

Review of Constructability and Operational Challenges faced by CCUS projects

  • 9 September 2020
  • Industry Insights

IEAGHG has commissioned several technical studies linked to large CCS projects1. Although constructability and operational challenges have been identified in previous IEAGHG reports, some aspects were unique due to the locations where the large CCS projects were implemented. These included the status of the initial facilities and other techno-economic and financial aspects of the specific CCUS projects. IEAGHG identified the need to provide a guide on constructability and operation for new CCS users. The objective of this study is to collect information from CCS projects to support the decisions during the transition from the planning to the execution phase. This study analysed a complete list of large CCUS projects from which relevant experience could be extracted. The projects were divided into three categories: operating projects; under construction or at advanced development; and cancelled projects. Based on the analysed projects, this study has delivered an assessment of potential key areas for success, and a decision tool guide for future projects

Technical Report

Understanding the cost of reducing water usage

  • 1 September 2020
  • Capture
  • Costs of CCUS

Previous IEAGHG studies (IEAGHG 2010/05, IEAGHG 2012/12, and IEAGHG 2018/04) have identified key factors that affect the Energy-Water-CCS Nexus: location; the dependency of the costs and water consumption on the cooling system; and the post-combustion CO2 capture (PCC) system. Additionally, extracting water from a CO2 storage site can significantly increase the available volumetric space for CO2 storage which could benefit PCC in the power sector. The conclusions drawn from these studies identified the need to assess the technical and economic impact of water consumption in power plants with and without CO2 capture systems in different locations. Further investigation also needs to encompass the impact of local regulations, ambient conditions, specific region-based power plants configurations, and water availability. This current study was conducted in two phases. Phase 1 developed a hypothetical base case scenario of power plants with and without a PCC system in The Netherlands, assuming both on and offshore storage, and with and without treatment of the water extracted from the storage site for its reuse in the power plant. Phase 2 was based on four hypothetical PCC systems in South Africa, Australia, China and India.

Technical Report

Future role of CCS technologies in the power sector

  • 1 August 2020
  • Capture

Carbon capture and storage (CCS) technologies are essential for meeting global temperature targets at least cost. They have the ability to decarbonise several sectors, including power. Low-carbon, dispatchable, power generation plants with CCS can operate at baseload and also flexibly. Importantly, their ability to operate flexibly not only allows them to complement output from intermittent renewables but also to facilitate increased capacity of intermittent renewables on the grid. For a number of reasons, however, the commercial deployment of power CCS has been slow and must accelerate if the technology is to achieve its potential and contribute effectively to mitigating climate change. Using Australia, China, the United Kingdom and the United Sates as case studies, this study demonstrates the viability of a set of power CCS technologies to cost-effectively decarbonise baseload, mid-merit and peaking generation in distinct power markets. To realise this potential, however, general, technology-specific and country-specific CCS challenges must be addressed urgently with policy and regulatory actions.

Technical Report

Value of emerging and enabling technologies in reducing costs, risks and timescales for CCS

  • 1 July 2020
  • Costs of CCUS

This study is a horizon scanning exercise, aiming to understand the relevance of digital and enabling technologies for CCS and to assess the benefits they could offer to the large-scale deployment of CCS. It was contracted with the consultants Element Energy who led the work in conjunction with Imperial College, London. Diverse technologies, platforms and innovations developed outside of the energy sector are now being brought to this sector to reduce costs, risks and timescales for projects and could be applicable to current and future CCS projects as well. The deployment of CCS currently falls short of the projected capacity needed to achieve global emissions reduction targets, despite being a proven technology in the reduction of greenhouse gas emissions.

Technical Report

Update techno-economic benchmarks for fossil fuel-fired power plants with CO2 capture

  • 1 July 2020
  • Capture
  • Costs of CCUS

IEAGHG updates its techno-economic studies periodically to examine the impact of developments and improvements made to core components, of changes made to system design, or when the fiscal environment may have materially altered. In the present case, benchmarks were updated for both coal-fired and natural gas-fired power plants with CCS, primarily to: Investigate the techno-economic impact of markedly increasing the capture rates to achieve near-zero CO2 emissions; And then, in addition, to: Explore the technological and economic benefits of recent improvements that may have been made to ultra-supercritical pulverised coal (USC PC) and natural-gas combined cycle (NGCC) technologies; and Examine the benefits of flue gas recirculation in the natural gas-fired cases, and the trade-offs between efficiency and flexibility in the coal-fired cases. Benchmarks were updated against a study published in 20181, where prices were based on 3Q2016. The update study used 3Q2018 prices. </li><!-- /wp:list-item --><!-- /wp:list-item --></ul><!-- /wp:list --> <!-- /wp:acf/column-content --> <!-- /wp:acf/columns -->

Technical Report

The Status and Challenges of CO2 Shipping Infrastructures

  • 1 July 2020
  • Transport

Large-scale CO2 storage will entail substantial transportation of CO2 from either point-sources or hub collection points to geological formations capable of storing thousands of tonnes of CO2 in supercritical form. In many parts of the world the most suitable storage options for large-scale capacity will be in offshore formations such as the North Sea. Consequently, it is important to build an understanding of the most suitable techno-economic solutions for the trans-shipment of CO2 from shore facilities to offshore storage locations. This study has explored a series of options to gain a more detailed comparison of shipping CO2 either directly by sea tanker to a storage site, or via an intermediate stage, to a shore facility in closer proximity to a storage site prior to transfer via pipeline. These options have also been compared to direct transfer via pipeline.

Explore our resources

Discover everything that IEAGHG has to offer, from the latest publications to exciting events.

Publications

Discover our expansive library of leading CCS research covering a wealth of topics. From DACS to BECCS and Carbon Markets to Carbon Capture.

Discover More

Events

We are committed to sharing the latest CCS knowledge worldwide. Learn how you can join our global conferences, expert networks, workshops and webinars.

Experience More

News & Insights

Get the latest IEAGHG news, discover our impact, and uncover essential analyses of global CCS developments.

Stay Updated

Discover membership

Access to restricted publications is just the beginning. IEAGHG membership has unlocked CCS potential for government and industry around the world. Discover what it can do for you.

Discover More

Get the latest CCS news and insights

Get essential news and updates from the CCS sector and the IEAGHG by email.

Can't find what you are looking for?

Whatever you would like to know, our dedicated team of experts is here to help you. Just drop us an email and we will get back to you as soon as we can.

Contact Us Now