This website will offer limited functionality in this browser. We only support the recent versions of major browsers like Chrome, Firefox, Safari, and Edge.

Technology Collaboration Programme by IEA

Explore our Publications Library

Discover the latest advances carbon capture and storage research

Technical Report

CO₂ capture in LNG

  • 1 October 2019
  • Capture
  • Costs of CCUS

Natural gas demand is forecasted to grow continuously for the next 10 years, playing a vital role in the global energy mix in 2030. in the specific case of liquefied natural gas, projections indicate a continued upward growth. The majority of near-term growth in liquefaction capacity is likely to happen in North America and Australia, although a number of other projects have the potential to add significant liquefaction capacity in the long term as well.

Technical Report

Further Assessment of Emerging CO₂ Capture Technologies for the Power Sector and their Potential to Reduce Costs

  • 1 September 2019
  • Capture
  • Costs of CCUS

CSIRO was commissioned by IEAGHG to provide a comprehensive assessment of emerging CO<sub>2</sub> capture technologies for the power sector and their potential to reduce costs. The objectives of this technical study were:<!-- wp:acf/columns {"name":"acf/columns","data":{"padding_top":"1","_padding_top":"field_columns_fields_padding_top","padding_bottom":"1","_padding_bottom":"field_columns_fields_padding_bottom","margin_top":"0","_margin_top":"field_columns_fields_margin_top","margin_bottom":"0","_margin_bottom":"field_columns_fields_margin_bottom"},"mode":"preview"} --> <!-- wp:acf/column-content {"name":"acf/column-content","mode":"preview"} --> <!-- wp:list --><ul> <!-- wp:list-item --><!-- wp:list-item --><li>to update the CO<sub>2</sub> capture benchmark technology and its enhancement over the 30w.t.% MEA-based chemical absorption</li><!-- /wp:list-item --><!-- /wp:list-item --> <!-- wp:list-item --><!-- wp:list-item --><li>to review the CO<sub>2</sub> capture technologies, their current status and trajectory</li><!-- /wp:list-item --><!-- /wp:list-item --> <!-- wp:list-item --><!-- wp:list-item --><li>to assess the potential of emerging CO<sub>2</sub> capture systems to reduce costs (LCOE) and identify risks and barriers for those on the path to TRL 9</li><!-- /wp:list-item --><!-- /wp:list-item --> <!-- wp:list-item --><!-- wp:list-item --><li>to assess techno-economically a number of selected CO<sub>2</sub> capture technologies for coal and gas-fired power plants.</li><!-- /wp:list-item --><!-- /wp:list-item --> </ul><!-- /wp:list --> <!-- /wp:acf/column-content --> <!-- /wp:acf/columns -->

Technical Review

Guide to Front End Engineering Design studies for selected CO₂ Capture and Storage Projects

  • 1 September 2019
  • Capture
  • Storage

This review aims to assess the current understanding on reducing emissions from flaring in the oil and gas industry and to review literature on both the quantification of emissions and current mitigation strategies. IEAGHG published a technical review 2017-TR7 (Oct 2017) which studied emissions along the natural gas supply chain but flaring emissions were not included. This review aims to follow on from 2017-TR7 as a supplementary review on flaring emissions.

Technical Report

The Shell Quest Carbon Capture and Storage Project

  • 1 June 2019
  • Capture
  • Storage

In late August 2015, Shell Canada began sustained, commercial-scale operation of the first-ever CO₂ capture facility at an oil sands bitumen or heavy oil upgrader in the world, as well as transportation and storage of the carbon dioxide to a nearby geological storage site. This remarkable facility is situated near Edmonton, Alberta, Canada. This report explores the journey of the Shell Quest Carbon Capture and Storage Project team and its partners, and will provide valuable insights to other heavy oil upgraders and oil refineries globally that seek to reduce their lifecycle greenhouse gas emissions through deployment of CCS technologies and infrastructure.

Technical Report

Review of Fuel Cell Technologies with CO₂ Capture for the Power Sector

  • 1 April 2019
  • Capture

DOOSAN U.K. was commissioned by IEAGHG to provide a comprehensive techno-economic review on MCFCs and SOFCs for the power sector. The objectives of this technical study were: <!-- wp:acf/columns {"name":"acf/columns","data":{"padding_top":"1","_padding_top":"field_columns_fields_padding_top","padding_bottom":"1","_padding_bottom":"field_columns_fields_padding_bottom","margin_top":"0","_margin_top":"field_columns_fields_margin_top","margin_bottom":"0","_margin_bottom":"field_columns_fields_margin_bottom"},"mode":"preview"} --> <!-- wp:acf/column-content {"name":"acf/column-content","mode":"preview"} --> <!-- wp:list --><ul><!-- wp:list-item --><!-- wp:list-item --><li>Deliver a literature review on MCFCs and SOFCs, identifying available configurations, status of development, applications and gaps to reach economically viable solutions </li><!-- /wp:list-item --><!-- /wp:list-item --><!-- wp:list-item --><!-- wp:list-item --><li>Supported by data from the literature, provide a techno-economic evaluation on selected cases and compare to a number of reference cases with and without a benchmark CO₂ capture system (chemical absorption with Cansolv technology) </li><!-- /wp:list-item --><!-- /wp:list-item --><!-- wp:list-item --><!-- wp:list-item --><li>Identify key parameters and areas impacting the price of implementing those technologies in the power sector as CO₂ abatement systems </li><!-- /wp:list-item --><!-- /wp:list-item --><!-- wp:list-item --><!-- wp:list-item --><li>Describe barriers and challenges to be addressed for SOFCs and MCFCs to achieve commercial application</li><!-- /wp:list-item --><!-- /wp:list-item --></ul><!-- /wp:list --> <!-- /wp:acf/column-content --> <!-- /wp:acf/columns -->

Technical Report

Towards Zero Emissions CCS from Power Stations using Higher Capture Rates or Biomass

  • 1 March 2019
  • Capture

To-date, capture technology developers have largely focused on designing plant for CO₂ capture rates of 85% to 90%, leaving 10-15% of the emissions uncaptured, which are usually referred to as residual emissions. In a “well below 2°C” scenario, it is projected that net zero carbon emissions would be required by early in the second half of this century. A review of the literature indicated that there were no technical barriers to increasing capture rates in the three classic CO₂ capture routes (post-, pre- and oxyfuel combustion) and with the broad suite of CO₂-capture technologies currently available or under development. A techno-economic analysis of a standard PCC process applied to both coal- and gas-fired power plants revealed that, with dedicated process design, the additional costs of achieving essentially zero CO₂ emissions were quite modest in comparison with the costs of achieving 90% CO₂ capture. For coal-fired power stations, the analysis found that using biomass co-combustion (10% biomass) combined with a standard PCC process (90% CO₂ capture) was the lowest cost option.

Technical Report

Sustainability in Petrochemicals

  • 1 February 2019
  • Capture
  • Industry Insights

This report investigates a unique combination of these industry drivers on the historic, current and future status of the petrochemical industry to gain insight into the sustainability of petrochemicals. Three categories of petrochemicals are subject to analysis, namely methanol, olefins and ammonia/urea. For each of these petrochemicals, the following series of studies are formed and analysed in aggregate to gain insight in to the sustainability prospects of the industry:<!-- wp:acf/columns {"name":"acf/columns","data":{"padding_top":"1","_padding_top":"field_columns_fields_padding_top","padding_bottom":"1","_padding_bottom":"field_columns_fields_padding_bottom","margin_top":"0","_margin_top":"field_columns_fields_margin_top","margin_bottom":"0","_margin_bottom":"field_columns_fields_margin_bottom"},"mode":"preview"} --> <!-- wp:acf/column-content {"name":"acf/column-content","mode":"preview"} --> <!-- wp:list --><ul><!-- wp:list-item --><!-- wp:list-item --><li>An assessment of the historic and current status of market trade, including trends in end-uses, feedstocks, demand, production and international trade. Demand projections for each chemical are made based on collected data.</li><!-- /wp:list-item --><!-- /wp:list-item --> <!-- wp:list-item --><!-- wp:list-item --><li>Process engineering characterisation of the current and low carbon alternative routes and feedstocks to produce the key petrochemical productions.</li><!-- /wp:list-item --><!-- /wp:list-item --> <!-- wp:list-item --><!-- wp:list-item --><li>Environmental life cycle assessment of the various feedstocks and production methods for each petrochemical and a contribution analysis of the key environmental impacts.</li><!-- /wp:list-item --><!-- /wp:list-item --> <!-- wp:list-item --><!-- wp:list-item --><li>Market projection of petrochemical production and technology mixes for a key region China, for the time period 2010 – 2050.</li><!-- /wp:list-item --><!-- /wp:list-item --> <!-- wp:list-item --><!-- wp:list-item --><li>A series of expert stakeholder interviews on views of how the petrochemical industry may progress in terms of demand, costs, environmental impacts and policy drivers.</li><!-- /wp:list-item --><!-- /wp:list-item --></ul><!-- /wp:list --> <!-- /wp:acf/column-content --> <!-- /wp:acf/columns -->

Technical Report

Flaring Emissions Quantification and Mitigation

  • 1 December 2018
  • Capture

This review aims to assess the current understanding on reducing emissions from flaring in the oil and gas industry and to review literature on both the quantification of emissions and current mitigation strategies. IEAGHG published a technical review 2017-TR7 (Oct 2017) which studied emissions along the natural gas supply chain but flaring emissions were not included. This review aims to follow on from 2017-TR7 as a supplementary review on flaring emissions.

Technical Report

Effects of Plant Location on the Costs of CO₂ Capture

  • 1 April 2018
  • Capture
  • Costs of CCUS

In recent years, IEAGHG has published several studies that address the application of CCS to coal and natural gas-fired power plants. The studies are based on a hypothetical site in the Netherlands. However, while Europe may be one region where large-scale power plants with CCS are built, there is even greater potential for CCS in regions where coal consumption is high and increasing or where emission reduction targets would require CCS to also be considered for gas-fired power stations. While very often, the cost of CO₂ capture is cited as a single value or as a range, the performance and costs of plants with CO₂ capture will be different at different locations – and there is currently a shortage of information calculated on a consistent basis, particularly for emerging economies.The key factors that influence the costs of capture, how these vary regionally and how the costs of capture varies regionally would be of enormous interest. For many, greater granularity in the regional differences in costs would be of value. For countries, such information could help them develop their national and international energy policy to greater effect, particularly where it relates to CCS. Similarly, industry could better identify markets and better target its spend on technology development and deployment. Incomplete information can lead to flawed analysis and result in poorer decision making. Considering these matters, the IEAGHG ExCo felt a study to investigate how the cost of CO₂ capture varied for different locations was warranted. Following a competitive tender, Amec Foster Wheeler (now Wood Group), Milan, were commissioned to undertake the study.

Technical Report

Valuing Flexibility in Power Plants

  • 1 December 2017
  • Capture

The study was designed to investigate the value of flexible CCS-equipped power plants to the UK’s electricity system. The value used, the System Value (or SV), is a metric that quantifies the benefit, i.e. the reduction in total system cost, of adding a unit of a particular technology to the electricity grid. To operate effectively, an electricity grid must not only have adequate generating capacity to meet demand but also have reliable reserve generation capacity (e.g. as back-up for outages) and sufficient system inertia (for frequency control). While supply-side (e.g. energy storage) or demand-side (e.g. energy efficiency) mechanisms may offer alternatives to grid expansion, adding new capacity remains a central requirement for any grid, e.g. as power plants are retired and/or demand increases. Since not all technologies provide the same services to the grid, the value of adding a unit of a particular technology will be a function, at any given time, not just of the incremental increase in power demand that it may satisfy but also of the characteristics of the technologies already connected.

Technical Review

Evaluating the Costs of Retrofitting CO₂

  • 1 April 2017
  • Capture
  • Costs of CCUS

The purpose of this report is to present a reference document that describes the technical basis and key assumptions to be used in evaluating the performance of the integrated oil refinery without and with CO<sub>2</sub> capture. The engineering and design basis, and various assumptions on feedstock, additives, products and by-products, and the specification of the CO<sub>2</sub> that are outlined in this report will be used as a reference for developing the refinery configurations to be developed in the study which will be published once the project is completed. Where applicable, information retrieved from IEAGHG document “Criteria for Technical and Economic Assessment of Plants with Low CO<sub>2</sub> Emissions” Version C-6, March 2014, are included.

Explore our resources

Discover everything that IEAGHG has to offer, from the latest publications to exciting events.

Publications

Discover our expansive library of leading CCS research covering a wealth of topics. From DACS to BECCS and Carbon Markets to Carbon Capture.

Discover More

Events

We are committed to sharing the latest CCS knowledge worldwide. Learn how you can join our global conferences, expert networks, workshops and webinars.

Experience More

News & Insights

Get the latest IEAGHG news, discover our impact, and uncover essential analyses of global CCS developments.

Stay Updated

Discover membership

Access to restricted publications is just the beginning. IEAGHG membership has unlocked CCS potential for government and industry around the world. Discover what it can do for you.

Discover More

Get the latest CCS news and insights

Get essential news and updates from the CCS sector and the IEAGHG by email.

Can't find what you are looking for?

Whatever you would like to know, our dedicated team of experts is here to help you. Just drop us an email and we will get back to you as soon as we can.

Contact Us Now