This website will offer limited functionality in this browser. We only support the recent versions of major browsers like Chrome, Firefox, Safari, and Edge.

Technology Collaboration Programme by IEA

Explore our Publications Library

Discover the latest advances carbon capture and storage research

Technical Report

Valuing Flexibility in Power Plants

  • 1 December 2017
  • Capture

The study was designed to investigate the value of flexible CCS-equipped power plants to the UK’s electricity system. The value used, the System Value (or SV), is a metric that quantifies the benefit, i.e. the reduction in total system cost, of adding a unit of a particular technology to the electricity grid. To operate effectively, an electricity grid must not only have adequate generating capacity to meet demand but also have reliable reserve generation capacity (e.g. as back-up for outages) and sufficient system inertia (for frequency control). While supply-side (e.g. energy storage) or demand-side (e.g. energy efficiency) mechanisms may offer alternatives to grid expansion, adding new capacity remains a central requirement for any grid, e.g. as power plants are retired and/or demand increases. Since not all technologies provide the same services to the grid, the value of adding a unit of a particular technology will be a function, at any given time, not just of the incremental increase in power demand that it may satisfy but also of the characteristics of the technologies already connected.

Technical Review

Evaluating the Costs of Retrofitting CO₂

  • 1 April 2017
  • Capture
  • Costs of CCUS

The purpose of this report is to present a reference document that describes the technical basis and key assumptions to be used in evaluating the performance of the integrated oil refinery without and with CO<sub>2</sub> capture. The engineering and design basis, and various assumptions on feedstock, additives, products and by-products, and the specification of the CO<sub>2</sub> that are outlined in this report will be used as a reference for developing the refinery configurations to be developed in the study which will be published once the project is completed. Where applicable, information retrieved from IEAGHG document “Criteria for Technical and Economic Assessment of Plants with Low CO<sub>2</sub> Emissions” Version C-6, March 2014, are included.

Technical Review

Reference data and Supporting Literature Reviews for SMR Based Hydrogen Production with CCS

  • 1 March 2017
  • Capture
  • Industry Insights

Over the past years a number of demonstration CCS projects have been developed around the world with the aim to provide valuable information, assist in the design of large CO<sub>2 </sub>capture plants and to advance the understanding of CO<sub>2 </sub>behaviour in the subsurface. The objectives of the CCS demonstration projects can be summarized as follows: <!-- wp:acf/columns {"name":"acf/columns","data":{"padding_top":"1","_padding_top":"field_columns_fields_padding_top","padding_bottom":"1","_padding_bottom":"field_columns_fields_padding_bottom","margin_top":"0","_margin_top":"field_columns_fields_margin_top","margin_bottom":"0","_margin_bottom":"field_columns_fields_margin_bottom"},"mode":"preview"} --> <!-- wp:acf/column-content {"name":"acf/column-content","mode":"preview"} --> <!-- wp:list --><ul> <!-- wp:list-item --><!-- wp:list-item --><li>Demonstrating the technical feasibility of a particular technology</li><!-- /wp:list-item --><!-- /wp:list-item --> <!-- wp:list-item --><!-- wp:list-item --><li>Gaining operational experience and economic information</li><!-- /wp:list-item --><!-- /wp:list-item --> <!-- wp:list-item --><!-- wp:list-item --><li>Gathering data to support the development of large scale projects</li><!-- /wp:list-item --><!-- /wp:list-item --></ul><!-- /wp:list --> <!-- /wp:acf/column-content --> <!-- /wp:acf/columns --> The purpose of this technical review is to provide an overview of the major on-going Demo CCS projects applied to SMR Hydrogen Plants with a focus on the CO<sub>2 </sub>capture system. In particular, the technical approach used for the design and execution of the Demo Plants and the relevant peculiarities are outlined.

Technical Report

Techno - Economic Evaluation of SMR Based Standalone (Merchant) Hydrogen Plant with CCS

  • 1 February 2017
  • Capture
  • Costs of CCUS

This study aimed to provide baseline information presenting the performance and costs of incorporating the CO<sub>2</sub> capture technologies to a SMR based hydrogen plant operating as merchant plant (as a standalone plant). The basis of the design of the hydrogen production process are presented in the main report. These are briefly described in this overview. The selection of technology options for CO<sub>2</sub> capture is based on the available information and performance data that could be provided by equipment manufacturers and suppliers.

Technical Report

Techno-Economic Evaluation of HYCO Plant Integrated to Ammonia / Urea or Methanol Production with CCS

  • 1 February 2017
  • Capture
  • Costs of CCUS

The ammonia and methanol industry is an allied industry very related to the production of hydrogen or HyCO gas. Globally, around 60% of the produced hydrogen is consumed by these industries. Outside China, production of these chemicals from natural gas is predominant. In fact, the production of ammonia and methanol is always an important strategy on how natural gas assets are monetised. An important aspects of this study is to demonstrate how an SMR based hydrogen/HyCO production is integrated to an industrial complex. Furthermore, it is essential to understand the different aspects of the production process and how will it be affected when additional CO<sub>2</sub> is captured from the SMR’s flue gas. IEAGHG has commissioned this study to evaluate the performance and cost of deploying CO<sub>2</sub> capture and storage in mega-plants producing urea and methanol from natural gas as feedstock. The results presented in this study should form the basis of future studies in industrial CCS and CCU.

Technical Report

Techno-Economic Evaluation of Retrofitting ccs in a market pulp mill and an integrated pulp and board mill

  • 1 December 2016
  • Capture
  • Costs of CCUS

This study assessed two hypothetical reference mills situated in the west coast of Finland as a basis for evaluation. The pulp mill (Base Case 1A) has an annual production of 800,000 adt of bleached softwood Kraft pulp (BSKP) which is sold as market pulp. The integrated pulp and board mill (Base Case 1B) has an annual production of 400,000 adt of board. This mill also consumes 60,000 adt/y of the softwood Kraft pulp that it produces, thus only 740,000 adt/y of BSKP is sold to the market. This study aims to evaluate the performance and cost of retrofitting post-combustion CO₂ capture technology to the pulp mill and understand its implication on the mill’s operation in terms of fuel balance, utility requirements (i.e. steam and electricity balance) and the mill’s financial performance.

Technical Report

PCC Process Control

  • 1 September 2016
  • Capture

The study focuses on performing an evaluation of process control strategies for normal, flexible and upset operation conditions of CO<sub>2</sub> post-combustion capture (PCC) processes based on solvent scrubbing. PCC is currently the leading near-term technology for large-scale deployment of CO<sub>2</sub> capture in the power generation sector.

Technical Report

Can CO₂ Capture and Storage Unlock 'Unburnable Carbon'?

  • 1 May 2016
  • Capture
  • Storage

This study has undertaken an initial assessment on the relevance of CCS in terms of the unburnable carbon issues. This consisted of the following tasks: <ol> <!-- wp:list-item --><!-- wp:list-item --><li>Undertake a comprehensive literature review to identify and assess those studies done to date which are relevant to, include or comment upon the role of CCS in the issues of unburnable carbon.</li><!-- /wp:list-item --><!-- /wp:list-item --> <!-- wp:list-item --><!-- wp:list-item --><li>Assess the assumptions, methodologies, any contentious subjects, and understand differences in these studies.</li><!-- /wp:list-item --><!-- /wp:list-item --> <!-- wp:list-item --><!-- wp:list-item --><li>Identify and assess sources of information on the global potential for CCS deployment, including storage potential.</li><!-- /wp:list-item --><!-- /wp:list-item --> <!-- wp:list-item --><!-- wp:list-item --><li>Potential issues that would contribute to better understanding and assessment of this topic (which are of a technical nature and thus IEAGHG could address), will be identified and recommendations made for further work, including whether any work is necessary relating to global storage capacity and CCS global potential.</li><!-- /wp:list-item --><!-- /wp:list-item --> </ol>

Technical Report

Oxy-combustion turbines

  • 1 August 2015
  • Capture

Post combustion capture is usually considered to be the leading option for capture of CO₂ at natural gas fired power plants but there is increasing interest in the alternative of oxy-combustion turbines which use recycled CO₂ and/or H2O as the working fluid instead of air. Large component tests have taken place and a 50 MWth demonstration plant is scheduled to be commissioned in 2017. Oxy-combustion turbines can also be combined with solid fuel gasification as an alternative to IGCC with pre-combustion capture. This study provides an independent evaluation of the performance and costs of a range of oxy-combustion turbine cycles, mainly for utility scale power generation. The study was carried out by Amec Foster Wheeler in collaboration with Politecnico di Milano.

Technical Report

Integrated CCS Project at SaskPower’s Boundary Dam Power Station

  • 1 August 2015
  • Capture
  • Storage

On October 2, 2014, the first-ever, commercial–scale, coal-fired power plant incorporating amine solvent absorption carbon capture began operation near Estevan, Saskatchewan, Canada. This was a global landmark event. Although carbon capture technologies had been pilot tested prior to this, a commercial– scale power plant now exists that has demonstrated that a number of high-risk technology and business issues have been overcome. This report summarizes the experience and learnings of SaskPower in a way that will hopefully provide insight to other clean-coal initiatives

Technical Report

Carbon capture and storage cluster projects: review and future opportunities

  • 1 March 2015
  • Capture
  • Storage

The study was based largely on literature in the public domain and a few enquiries to ascertain current status. Some valuable additional material was also obtained from expert reviewers of the study. Sufficient information was found to review 12 clusters in depth and a number of other less developed clusters at a more general level. Based on the results the gaps, risks and challenges faced by those developing CCS cluster projects are described. Some criteria for selecting additional cluster locations are developed and recommendations for increasing the likelihood of success are put forwards. The data and references were gathered in a working database to facilitate comparisons. A CCS cluster is taken to mean a location where the opportunity to cluster sources and/or sinks for CCS has been identified in published literature.

Explore our resources

Discover everything that IEAGHG has to offer, from the latest publications to exciting events.

Publications

Discover our expansive library of leading CCS research covering a wealth of topics. From DACS to BECCS and Carbon Markets to Carbon Capture.

Discover More

Events

We are committed to sharing the latest CCS knowledge worldwide. Learn how you can join our global conferences, expert networks, workshops and webinars.

Experience More

News & Insights

Get the latest IEAGHG news, discover our impact, and uncover essential analyses of global CCS developments.

Stay Updated

Discover membership

Access to restricted publications is just the beginning. IEAGHG membership has unlocked CCS potential for government and industry around the world. Discover what it can do for you.

Discover More

Get the latest CCS news and insights

Get essential news and updates from the CCS sector and the IEAGHG by email.

Can't find what you are looking for?

Whatever you would like to know, our dedicated team of experts is here to help you. Just drop us an email and we will get back to you as soon as we can.

Contact Us Now