Publication Overview
The main purpose of the study was to evaluate the cost of retrofitting CO2 capture in a range of refinery types typical of those found in Europe. These included bo0th simple and high complexity refineries covering typical European refinery capacities from 100,000 to 350,000 bbl/d.
The assessments performed in this report focused on retrofit costs including modifications in the refineries, interconnections, and additional CHP and utility facilities. The main focus of the study was on CO2 capture from refinery Base Case 4, which was considered to be the most relevant reference for existing European refineries of interest for CO2 capture retrofit. Considering the large number of cases (16) and their complexity, a hybrid methodology is used to evaluate the cost of the sections (CO2 capture and compression, utilities, and interconnecting) of the concept. In this approach, four of the 16 capture cases were selected to represent a wide range of CO2 capture capacity and flue gas CO2 content. In each case, detailed assessments were undertaken. These detailed cost assessments form, based on subsequent scaling, the basis for the assessment of the other cases. The scaling equations have a larger purpose in that they can be used by refineries/policy experts to evaluate capital costs of retrofitting CO2 capture to refineries of interest.
Publication Summary
The assessments performed in this report focused on retrofit costs including modifications in the refineries, interconnections, and additional CHP and utility facilities. The main focus of the study was on CO2 capture from refinery Base Case 4, which was considered to be the most relevant reference for existing European refineries of interest for CO2 capture retrofit. Considering the large number of cases (16) and their complexity, a hybrid methodology is used to evaluate the cost of the sections (CO2 capture and compression, utilities, and interconnecting) of the concept. In this approach, four of the 16 capture cases were selected to represent a wide range of CO2 capture capacity and flue gas CO2 content. In each case, detailed assessments were undertaken. These detailed cost assessments form, based on subsequent scaling, the basis for the assessment of the other cases. The scaling equations have a larger purpose in that they can be used by refineries/policy experts to evaluate capital costs of retrofitting CO2 capture to refineries of interest.
The results of the cost evaluation of the 16 CO2 capture cases shows that the cost of retrofitting CO2 capture lies between 160 and 210 $/tCO2,avoided as shown in Figure 6. These estimates are significantly