This website will offer limited functionality in this browser. We only support the recent versions of major browsers like Chrome, Firefox, Safari, and Edge.

Technology Collaboration Programme by IEA

The Status and Challenges of CO₂ Shipping Infrastructures

Element Energy, SINTEF Industry

Citation: IEAGHG, "The Status and Challenges of CO₂ Shipping Infrastructures", 2020-10, July 2020.

Download The Full Publication Now

Publication Overview

Large-scale CO₂ storage will entail substantial transportation of CO₂ from either point-sources or hub collection points to geological formations capable of storing thousands of tonnes of CO₂ in supercritical form. In many parts of the world the most suitable storage options for large-scale capacity will be in offshore formations such as the North Sea. Consequently, it is important to build an understanding of the most suitable techno-economic solutions for the trans-shipment of CO₂ from shore facilities to offshore storage locations. This study has explored a series of options to gain a more detailed comparison of shipping CO₂ either directly by sea tanker to a storage site, or via an intermediate stage, to a shore facility in closer proximity to a storage site prior to transfer via pipeline. These options have also been compared to direct transfer via pipeline.

Publication Summary

  • The results from this study demonstrate that for long distance transport of low volumes of CO₂(~1-2 Mtpa), such as in cross-border shipping from several industrial CCS clusters acrossEurope, shipping can provide a cost-effective option.
  • Based on the four different scenarios modelled in this study, more CO₂ could be stored annuallyby shipping to an intermediate port, and then transporting CO₂ to a storage site via a pipeline,compared with direct delivery to the site by tanker.
  • Of the four scenarios modelled here, based on a shipping distance of 1,000 km, there is littlecost advantage from increasing the ship size above 10,000 tCO₂. Conversely, there is also littlepenalty in cost by using larger ships. However, the optimum ship size will be highly dependenton the flow rate (Mtpa). Ideally, size and capacity could be customised for each specificlogistics chain.
  • A comparison of the levelised cost of four different scenarios conducted in this study suggeststhat direct injection at a storage site from a ship is the most cost-effective solution (32 €/t CO₂).The cost advantage may vary under different scenarios.
  • Transfer of CO₂ from a tanker into a floating storage injection (FSI) unit is the least costeffective solution even though it can allow continuous injection (41 €/t CO₂). Moreover, thissystem is unproven and less well understood compared with onshore facilities therefore directcomparison needs to be treated with caution.
  • The modification of LPG tankers for CO₂, or dual purpose, will be influenced by the contrastin fluid density of the different gases. Consequently, only 50-60% of a tank capacity designedfor LPG can be used for CO₂. Partially filled cargo tanks will also have a structural impact ona ship and its motion.
  • Tankers specifically designed for CO₂ transportation can be optimised for maximum capacityand investment cost.
  • A comparison between CO₂ delivered by sea tanker and a pipeline to an offshore storage site,based on minimum unit costs, shows that the pipeline option is cheaper over shorter distances.The break-even distance depends on the volume of CO₂ and whether tankers are pre-pressurisedor non-pressurised (see Figure 9).
  • A review of the legal instruments (international treaties, EU law & Norwegian Law), that relateto the movement of CO₂, shows that there are no evident showstoppers to the internationalshipment of CO₂.
  • A decision taken at the 14th meeting of the Contracting Parties to the London Protocol on 7th –11th October 2019 means that Contracting Parties who choose to are able to legally transshipCO₂ for storage.
  • An unfortunate result of having two monitoring reporting and verification (MRV) regimes forCO₂, is that ship operators will have to manage two separate reporting schemes for the fuel thatthey use. The European Commission has reviewed the MRV regulation and is consideringpotential alignment with the International Maritime Organisation Data Collection System (IMODCS).

Download Publication

Access the complete publication in PDF format.

Download Now

Related Publications

View similar publications.

View All Publications
Technical Report

Components of CCS Infrastructure – Interim CO₂ Holding Options

  • 27 November 2023
  • Storage
  • Transport

This work, undertaken on behalf of IEAGHG by TNO and SINTEF, provides an overview of temporary / interim CO₂ storage, or ‘holding’, options (also called buffers) and investigates the role of buffer storage and its potential to create flexible and robust carbon capture and storage (CCS) chains. The report looks at current and emerging buffer technologies, conducts simulations to demonstrate the temporary storage required for given flow-rate scenarios and discusses the impact of buffer capacity on transport costs. In the report, the storage requested in the chain for normal operation is presented as " temporary storage" and storage to give buffer capacity is presented as " buffer storage". This report has focussed on buffering at the emitter site. The results of this study will benefit CO₂ storage site project developers, operators, financiers and regulators.

Technical Report

Re-Use of Oil & Gas Facilities for CO₂ Transport and Storage

  • 22 June 2018
  • Storage
  • Transport

Our recent study ‘Case Studies of CO₂ Storage in Depleted Oil and Gas Fields’ (2017-01) concluded that CO₂ storage in depleted fields would not only be viable with potentially lower risk but could also be relatively cost effective, providing important intermediate-scale storage resources. The report highlighted that re-using an O&G fields would be beneficial as “there would likely be cost savings over saline aquifer sites, particularly in the characterisation stages (where there is the advantage of production history and proved hydrocarbon retention to reduce uncertainty in containment and capacity)”.

Technical Review

Ethane and CO₂ shipping

  • 1 March 2017
  • Transport

The study is a first stage assessment of a novel concept of transporting ethane from the USA in dedicated maritime carriers to Europe, which are modified from standard designs to be equipped to carry both ethane and CO<sub>2</sub>, so that CO<sub>2</sub> can be transported back (back hauled) to the USA for use in CO₂-EOR operations.

Technical Report

Operational Flexibility of CO₂ Transport and Storage

  • 1 March 2016
  • Storage
  • Transport

This study has reviewed different transport and storage scenarios to reflect the range of full-scale commercial operations. In addition to a wide ranging literature review a survey of industrial, utility, pipeline and CO<sub>2</sub>-EOR operators was also conducted to obtain their insights of CO<sub>2</sub> transport and storage. Owing to the sensitivity of these commercial operations it has not been possible to attribute background information to either individuals or their companies. Anonymity has not prevented the inclusion of real world data on exhaust gas composition from different sources including power generation (coal and natural gas), oil refining, gas processing, cement, hydrogen production, and ethanol production. It also includes background information on actual CO<sub>2</sub> pipeline operation, including network hubs, and CO<sub>2</sub> CO<sub>2</sub>-EOR experience in the United States. Experience from different industrial scale injection projects such as Sleipner, Snøhvit and In Salah, has been included. The study has investigated how flexible operation affects CO<sub>2</sub> storage and the measures adopted to accommodate intermittent supply. There are a series of prioritized recommendations based on the gaps in knowledge.

Technical Report

Evaluation and analysis of the performance of dehydration units for CO₂ capture

  • 1 April 2014
  • Capture
  • Transport

The purpose of the study is to examine the characteristics of the various dehydration processes and the way they can be best integrated into the CCS system. Moisture in CO<sub>2</sub> can lead to corrosion and hydrate formation. It is necessary to dehydrate CO<sub>2</sub> streams prior to transporting the product in carbon steel pipelines. Several different types of CO<sub>2</sub> capture processes exist. The type selected for use is dependent upon the basic type of combustion process in operation, e.g. coal or natural gas. The CO<sub>2</sub> produced by the various combustion and associated capture processes is of different quality, containing different inerts and impurities, with varying compositions and conditions. The dehydration process can be significantly affected by these differences; it was therefore necessary to consider the different types of capture process separately within this study.

Technical Report

CO₂ Pipeline Infrastructure

  • 1 December 2013
  • Transport

The deliverables for this study consist of a reference manual, database, interactive web tool and webinar. The reference manual highlights key design, construction, operational and regulatory learnings. A database, containing more than 100 data elements, complements the reference manual

Technical Review

Development of a Global CO₂ Pipeline Infrastructure

  • 1 August 2010
  • Transport

Projections of the scale on which CCS needs to be deployed to meet targets for CO₂ emissions reductions indicate that a massive CO₂ pipeline infrastructure will be required. To date CCS systems have tended to be based on dedicated pipelines connecting source to sink although some studies of regional CO₂ pipeline infrastructure requirements have been carried out. The purpose of this study is to examine the wider issues including design, financing, economics and regional differences.

Technical Report

Upgraded calculator for CO₂ pipeline systems

  • 1 March 2009
  • Costs of CCUS
  • Transport

A contract to develop and upgrade the original Woodhill program and the network program was awarded to Gastec UK/AMEC who had already produced the new network design program. After obtaining the original code from Woodhill-Frontier options were examined and it was felt that as both programs were Excel-based it would be simplest to amalgamate them into one program using the original Woodhill interface where possible.The possibility of adding a graphical map-based interface for the distributed collection network was investigated as an additional option but although possible the necessary licence for commercial use was found to be too costly. It was on this basis that GastecUK/AMEC proceeded with the development of the upgraded calculator.

Technical Report

Distributed Collection of CO₂

  • 1 September 2007
  • Capture
  • Transport

This study examines the design issues and costs of collecting CO₂ captured from multiple distributed sources down to quantities of 5000 tpa. It includes a spreadsheet model for sizing pipelines in a branched collection network with multiple pressure levels. This model also estimates overall collection costs including those for compression using unit costs for construction in the UK.

Our most recent publications

Our authoritative, peer-reviewed publications cover topics that include carbon capture, transport, storage, monitoring, regulation, and more.

View All Publications
Technical Review

Insurance Coverage for CO₂ Storage Projects

  • 16 August 2024
  • Industry Insights
  • Storage

This report is a focused review of recent developments regarding insurance coverage for carbon dioxide (CO₂) geological storage projects. It seeks to address the following: what companies are offering or planning to offer insurance to CO₂ storage projects, what is the scope and duration of the coverage offered, and does coverage extend to the transportation of CO₂ to the project site? This work and report was prepared by Franz Hiebert.

Technical Review

CO₂ Storage Site Catalogue

  • 8 August 2024
  • Storage

This Technical Review provides an overview of 22 CO₂ storage sites from around the world. These include CO₂-EOR, commercial scale storage sites and a number of pilot and demonstration storage sites in both depleted hydrocarbon reservoirs and saline reservoirs. Its primary aim is to provide a convenient source of collated information with a specific focus on technical information that are in the public domain.

Technical Report

Power CCS: Potential for cost reductions and improvements

  • 5 August 2024
  • Capture
  • Costs of CCUS

CCS, in the context of power CCS technologies, will be an essential component of the portfolio of technologies required to reach net-zero emissions in the power sector. This study explores the potential to reduce the cost and accelerate the uptake of power CCS technologies.

Technical Review

7th Post-Combustion Capture Conference Summary

  • 1 April 2024
  • Capture
  • Event Proceedings

The 7th edition of the Post Combustion Capture Conference (PCCC-7) was held on the 25?28 September 2023 and was jointly hosted by the IEAGHG, U.S. Department of Energy (DOE) and the National Energy Technology Laboratory (NETL) and sponsored by Worley, Shell, and Mitsubishi Heavy Industries. (MHI).

Get the latest CCS news and insights

Get essential news and updates from the CCS sector and the IEAGHG by email.

Can’t find what you are looking for?

Whatever you would like to know, our dedicated team of experts is here to help you. Just drop us an email and we will get back to you as soon as we can.

Contact Us Now