CO₂ Storage Efficiency in Deep Saline Formations - Stage 2
- 1 January 2018
- Storage
A key determinant for CO₂ storage in deep saline formations (DSFs) is dynamic efficiency (E factor) – that is the effect that increased pressure caused by fluid injection has on the storage capacity of a formation. The storage capacity will always be limited by the pressure limit imposed by the geomechanical strength of the caprock, which is defined as the fracture pressure. If a formation is bounded by faults or other low permeability barriers, then excess pressure could limit the dynamic efficiency, a condition referred to as a closed boundary. In contrast formations that extend over several 100 square kilometres without significant barriers can enable pressure to be dissipated, a condition known as an open boundary. In a previous study commissioned by IEAGHG the effects of dynamic efficiency were compared between two contrasting onshore basins (one open and the other closed), but over a long hypothetical time-scale of 2,000 years. Although the previous study showed the effects of boundary conditions, the dynamic efficiency was based on very large areas extending of several thousands of square kilometres. The results did not reflect the more likely conditions of much shorter timescales and injection over limited areas that would be experienced in early CO₂ storage sites. The aim of this second study is to improve the estimated dynamic storage of DSFs based on a modelled 50 year injection period and over comparatively limited areas of ~1,000 km2. Two well researched formations were selected: one from an onshore basin (the Minnelusa Formation in the USA) and the other form an offshore basin (the Bunter Formation in the North Sea). This study also includes a cost development model to determine how the number of wells affects the cost-effectiveness of each storage site.